1
|
Cognitive Framework for HIV-1 Protease Cleavage Site Classification Using Evolutionary Algorithm. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Rowson SA, Harrell CS, Bekhbat M, Gangavelli A, Wu MJ, Kelly SD, Reddy R, Neigh GN. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress. Front Psychiatry 2016; 7:102. [PMID: 27378953 PMCID: PMC4913326 DOI: 10.3389/fpsyt.2016.00102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was increased in the hippocampus. In addition, adolescent stress exposure increased microglial branching and junctions in female wild-type rats without causing any additional increase in HIV-1 rats. These data suggest that the presence of HIV-1 proteins during development leads to alterations in behavioral and neuroinflammatory endpoints that are not further impacted by concurrent chronic adolescent stress.
Collapse
Affiliation(s)
- Sydney A Rowson
- Molecular and Systems Pharmacology Graduate Studies Program, Emory University , Atlanta, GA , USA
| | | | - Mandakh Bekhbat
- Neuroscience Graduate Studies Program, Emory University , Atlanta, GA , USA
| | | | - Matthew J Wu
- Neuroscience and Behavioral Biology, Emory College , Atlanta, GA , USA
| | - Sean D Kelly
- Department of Physiology, Emory University , Atlanta, GA , USA
| | - Renuka Reddy
- Neuroscience and Behavioral Biology, Emory College , Atlanta, GA , USA
| | - Gretchen N Neigh
- Neuroscience Graduate Studies Program, Emory University, Atlanta, GA, USA; Department of Physiology, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Griffin TZ, Kang W, Ma Y, Zhang M. The HAND Database: a gateway to understanding the role of HIV in HIV-associated neurocognitive disorders. BMC Med Genomics 2015; 8:70. [PMID: 26510927 PMCID: PMC4625622 DOI: 10.1186/s12920-015-0143-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Background Despite an augmented research effort and scale-up of highly active antiretroviral therapy, a high prevalence of HIV-1-associated neurocognitive disorders (HAND) persists in the HIV-infected population. Nearly 50 % of all HIV-1-infected individuals suffer from a neurocognitive disorder due to neural and synaptodendritic damage. Challenges in HAND research, including limited availability of brain tissue from HIV patients, variation in HAND study protocols, and virus genotyping inconsistency and errors, however, have resulted in studies with insufficient power to delineate molecular mechanisms underlying HAND pathogenesis. There exists, therefore, a great need for a reliable and centralized resource specific to HAND research, particularly for epidemiological study and surveillance in resource-limited countries where severe forms of HAND persist. Description To address the aforementioned imperative need, here we present the HAND Database, a resource containing well-curated and up-to-date HAND virus information and associated clinical and epidemiological data. This database provides information on 5,783 non-redundant HIV-1 sequences from global HAND research published to date, representing a total of 163 unique individuals that have been assessed for HAND. A user-friendly interface allows for flexible searching, filtering, browsing, and downloading of data. The most comprehensive database of its kind, the HAND Database not only bolsters current HAND research by increasing sampling power and reducing study biases caused by protocol variation and genotyping inconsistency, it allows for comparison between HAND studies across different dimensions. Development of the HAND Database has also revealed significant knowledge gaps in HIV-driven neuropathology. These gaps include inadequate sequencing of viral genes beyond env, lack of HAND viral data from HIV epidemiologically important regions including Asian and Sub-Saharan African countries, and biased sampling toward the male gender, all factors that impede efforts toward providing an improved quality of life to HIV-infected individuals, and toward elimination of viruses in the brain. Conclusion Our aim with the HAND database is to provide researchers in both the HIV and neuroscience fields a comprehensive and rigorous data source toward better understanding virus compartmentalization and to help in design of improved strategies against HAND viruses. We also expect this resource, which will be updated on a regular basis, to be useful as a reliable reference for further HAND epidemiology studies. The HAND Database is freely available and accessible online at http://www.handdatabase.org.
Collapse
Affiliation(s)
- Tess Z Griffin
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA. .,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Weiliang Kang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA. .,Present address: College of Pharmacy, University of Illinois, Chicago, IL, 60612, USA.
| | - Yongjie Ma
- Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
|
5
|
Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, Fox MA, Su J, Medina AE, Krahe TE, Knapp PE, Guido W, Hauser KF. Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry 2013; 73:443-53. [PMID: 23218253 PMCID: PMC3570635 DOI: 10.1016/j.biopsych.2012.09.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND), including memory dysfunction, continue to be a major clinical manifestation of HIV type-1 infection. Viral proteins released by infected glia are thought to be the principal triggers of inflammation and bystander neuronal injury and death, thereby driving key symptomatology of HAND. METHODS We used a glial fibrillary acidic protein-driven, doxycycline-inducible HIV type-1 transactivator of transcription (Tat) transgenic mouse model and examined structure-function relationships in hippocampal pyramidal cornu ammonis 1 (CA1) neurons using morphologic, electrophysiological (long-term potentiation [LTP]), and behavioral (Morris water maze, fear-conditioning) approaches. RESULTS Tat induction caused a variety of different inclusions in astrocytes characteristic of lysosomes, autophagic vacuoles, and lamellar bodies, which were typically present within distal cytoplasmic processes. In pyramidal CA1 neurons, Tat induction reduced the number of apical dendritic spines, while disrupting the distribution of synaptic proteins (synaptotagmin 2 and gephyrin) associated with inhibitory transmission but with minimal dendritic pathology and no evidence of pyramidal neuron death. Electrophysiological assessment of excitatory postsynaptic field potential at Schaffer collateral/commissural fiber-CA1 synapses showed near total suppression of LTP in mice expressing Tat. The loss in LTP coincided with disruptions in learning and memory. CONCLUSIONS Tat expression in the brain results in profound functional changes in synaptic physiology and in behavior that are accompanied by only modest structural changes and minimal pathology. Tat likely contributes to HAND by causing molecular changes that disrupt synaptic organization, with inhibitory presynaptic terminals containing synaptotagmin 2 appearing especially vulnerable.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, Virginia 23298, USA.
| | - Bogna M. Ignatowska-Jankowska
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Cecilia Bull
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Robert P. Skoff
- Department of Anatomy & Cell Biology, Wayne State University, School of Medicine, Detroit, MI 48202
| | - Aron H. Lichtman
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Laura E. Wise
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Michael A. Fox
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Jianmin Su
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Alexandre E. Medina
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Thomas E. Krahe
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Pamela E. Knapp
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - William Guido
- Anatomy & Neurobiology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| | - Kurt F. Hauser
- Departments of Pharmacology & Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23289
| |
Collapse
|
6
|
|
7
|
Multi-instance classification based on regularized multiple criteria linear programming. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1008-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming. J Theor Biol 2010; 269:174-80. [PMID: 21035465 DOI: 10.1016/j.jtbi.2010.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/01/2010] [Accepted: 10/16/2010] [Indexed: 11/21/2022]
Abstract
Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids.
Collapse
|
9
|
Multiple criteria optimization-based data mining methods and applications: a systematic survey. Knowl Inf Syst 2009. [DOI: 10.1007/s10115-009-0268-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Fang H, Espy KA, Rizzo ML, Stopp C, Wiebe SA, Stroup WW. Pattern Recognition of Longitudinal Trial Data with Nonignorable Missingness: An Empirical Case Study. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING 2009; 8:491-513. [PMID: 20336179 PMCID: PMC2844665 DOI: 10.1142/s0219622009003508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Methods for identifying meaningful growth patterns of longitudinal trial data with both nonignorable intermittent and drop-out missingness are rare. In this study, a combined approach with statistical and data mining techniques is utilized to address the nonignorable missing data issue in growth pattern recognition. First, a parallel mixture model is proposed to model the nonignorable missing information from a real-world patient-oriented study and concurrently to estimate the growth trajectories of participants. Then, based on individual growth parameter estimates and their auxiliary feature attributes, a fuzzy clustering method is incorporated to identify the growth patterns. This case study demonstrates that the combined multi-step approach can achieve both statistical gener ality and computational efficiency for growth pattern recognition in longitudinal studies with nonignorable missing data.
Collapse
Affiliation(s)
- Hua Fang
- Office of Research, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
| | | | - Maria L. Rizzo
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Christian Stopp
- Office of Research, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
| | - Sandra A. Wiebe
- Office of Research, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
| | - Walter W. Stroup
- Department of Statistics, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
11
|
|
12
|
L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc 2008; 3:866-76. [PMID: 18451794 DOI: 10.1038/nprot.2008.51] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
L-Measure (LM) is a freely available software tool for the quantitative characterization of neuronal morphology. LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions. This report illustrates several LM protocols: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of approximately 20 neurons. The tool is available at http://krasnow.gmu.edu/cn3 for either online use on any Java-enabled browser and platform or download for local execution under Windows and Linux.
Collapse
|
13
|
Whitney NP, Peng H, Erdmann NB, Tian C, Monaghan DT, Zheng JC. Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. FASEB J 2008; 22:2888-900. [PMID: 18403631 DOI: 10.1096/fj.07-104661] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We identify calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on human neural progenitor cells (NPCs) and present a physiological role in neurogenesis. RNA editing of the GluR2 subunit at the Q/R site is responsible for making most AMPA receptors impermeable to calcium. Because a single-point mutation could eliminate the need for editing at the Q/R site and Q/R-unedited GluR2 exists during embryogenesis, the Q/R-unedited GluR2 subunit presumably has some important actions early in development. Using calcium imaging, we found that NPCs contain calcium-permeable AMPA receptors, whereas NPCs differentiated to neurons and astrocytes express calcium-impermeable AMPA receptors. We utilized reverse-transcription polymerase chain reaction and BbvI digestion to demonstrate that NPCs contain Q/R-unedited GluR2, and differentiated cells contain Q/R-edited GluR2 subunits. This is consistent with the observation that the nuclear enzyme responsible for Q/R-editing, adenosine deaminase (ADAR2), is increased during differentiation. Activation of calcium-permeable AMPA receptors induces NPCs to differentiate to the neuronal lineage and increases dendritic arbor formation in NPCs differentiated to neurons. AMPA-induced differentiation of NPCs to neurons is abrogated by overexpression of ADAR2 in NPCs. This elucidates the role of AMPA receptors as inductors of neurogenesis and provides a possible explanation for why the Q/R editing process exists.
Collapse
Affiliation(s)
- Nicholas P Whitney
- Laboratory of Neurotoxicology, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
14
|
Predicting the distance between antibody’s interface residue and antigen to recognize antigen types by support vector machine. Neural Comput Appl 2007. [DOI: 10.1007/s00521-006-0076-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Erdmann NB, Whitney NP, Zheng J. Potentiation of Excitotoxicity in HIV-1 Associated Dementia and the Significance of Glutaminase. ACTA ACUST UNITED AC 2006; 6:315-328. [PMID: 18059978 DOI: 10.1016/j.cnr.2006.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HIV-1 Associated Dementia (HAD) is a significant consequence of HIV infection. Although multiple inflammatory factors contribute to this chronic, progressive dementia, excitotoxic damage appears to be an underlying mechanism in the neurodegenerative process. Excitotoxicity is a cumulative effect of multiple processes occurring in the CNS during HAD. The overstimulation of glutamate receptors, an increased vulnerability of neurons, and disrupted astrocyte support each potentiate excitotoxic damage to neurons. Recent evidence suggests that poorly controlled generation of glutamate by phosphate-activated glutaminase may contribute to the neurotoxic state typical of HAD as well as other neurodegenerative disorders. Glutaminase converts glutamine, a widely available substrate throughout the CNS to glutamate. Inflammatory conditions may precipitate unregulated activity of glutaminase, a potentially important mechanism in HAD pathogenesis.
Collapse
Affiliation(s)
- Nathan B Erdmann
- The laboratory of Neurotoxicology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880
| | | | | |
Collapse
|
16
|
Poluektova L, Meyer V, Walters L, Paez X, Gendelman HE. Macrophage-induced inflammation affects hippocampal plasticity and neuronal development in a murine model of HIV-1 encephalitis. Glia 2006; 52:344-53. [PMID: 16078235 DOI: 10.1002/glia.20253] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cognitive, behavioral, and motor impairments, during progressive human immunodeficiency virus type 1 (HIV-1) infection, are linked to activation of brain mononuclear phagocytes (MP; perivascular macrophages and microglia). Activated MPs effect a giant cell encephalitis and neuroinflammatory responses that are mirrored in severe combined immunodeficient (SCID) mice injected with human monocyte-derived macrophages (MDM). Whether activated human MDMs positioned in the basal ganglia affect hippocampal neuronal plasticity, the brain subregion involved in learning and memory, is unknown. Thus, immunohistochemical techniques were used for detection of newborn neurons (polysialylated neuronal cell adhesion molecule [PSA-NCAM]) and cell proliferation (Ki-67) to assay MDM effects on neuronal development in mouse models of HIV-1 encephalitis. Immunodeficient (C.B.-17/SCID and nonobese diabetic/SCID, NOD/SCID) and immune competent (C.B.-17) mice were injected with uninfected or HIV-1-infected MDM. Sham-operated or unmanipulated mice served as controls. Neuronal plasticity was evaluated in the hippocampal dentate gyrus (DG) at days 7 and 28. By day 7, increased numbers of Ki-67+ cells, PSA-NCAM+ cells and dendrites in DG were observed in sham-operated animals. In contrast, significant reductions in neuronal precursors and altered neuronal morphology paralleled increased microglial activation in both HIV-1-infected and uninfected MDM-injected animals. DG cellular composition was restored at day 28. We posit that activated MDM induce inflammation and diminish DG neuronal plasticity. These data provide novel explanations for the cognitive impairments manifested during advanced HIV-1 infection.
Collapse
Affiliation(s)
- Larisa Poluektova
- Laboratory of Neuroregeneration, Department of Pharmacology and Experimental Neuroscience, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | |
Collapse
|
17
|
Dou H, Kingsley JD, Mosley RL, Gelbard HA, Gendelman HE. Neuroprotective strategies for HIV-1 associated dementia. Neurotox Res 2004; 6:503-21. [PMID: 15639783 DOI: 10.1007/bf03033447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus-1 (HIV-1) commonly affects cognitive, behavioral and motor functions during the disease course. The neuropathogenesis of viral infection revolves around neurotoxins produced from infected and immune-activated mononuclear phagocytes (MP; perivascular macrophages and microglia). Direct infection of neurons occurs rarely, if at all. Neurologic disease arises in part as a consequence of MP metabolic dysfunction. Although the advent of highly active antiretroviral therapy (HAART) has attenuated the incidence and severity of neurologic disease, it, nonetheless, remains a common and disabling problem for those living with HIV-1 infection. Adjunctive therapies are currently designed to ameliorate clinical outcomes and are included in the therapeutic armamentarium. Anti-inflammatory drugs that inhibit cytokines, chemokines and interferons linked to neurodegenerative processes can significantly ameliorate neuronal function. HIV-1 neurotoxins have the unique ability to up-regulate glycogen synthase kinase-3beta (GSK-3beta) activity that in turn elicits neuronal apoptosis. GSK-3beta inhibitors are neuroprotective in animal models of Neuro AIDS. They are also currently in Phase 1 clinical trials designed for safety and tolerability in patients with HIV-1 infection. Neurotrophins are only beginning to be realized for their therapeutic potential in HIV-1 associated neurologic disease. This review article provides a broad overview of neuroprotective strategies for HIV-1 infection and details how such strategies act and may be implemented for treatment of human disease.
Collapse
Affiliation(s)
- Huanyu Dou
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | |
Collapse
|