1
|
Muñoz-Herrera D, Calderón-Rivera A, Zarco N, Corzo-Lopez A, Leyva-Leyva M, Monjaraz E, Sandoval A, Oviedo N, González-Ramírez R, Felix R. Molecular cloning of the gene promoter encoding the human Ca Vγ 2/Stargazin divergent transcript ( CACNG2-DT): characterization and regulation by the cAMP-PKA/CREB signaling pathway. Front Physiol 2023; 14:1286808. [PMID: 38033343 PMCID: PMC10687476 DOI: 10.3389/fphys.2023.1286808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.
Collapse
Affiliation(s)
- David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Aida Calderón-Rivera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Natanael Zarco
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-Lopez
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City, Mexico
| | - Eduardo Monjaraz
- Institute of Physiology, Meritorious Autonomous University of Puebla (BUAP), Puebla, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
2
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
3
|
Silva RBM, Greggio S, Venturin GT, da Costa JC, Gomez MV, Campos MM. Beneficial Effects of the Calcium Channel Blocker CTK 01512-2 in a Mouse Model of Multiple Sclerosis. Mol Neurobiol 2018; 55:9307-9327. [PMID: 29667130 DOI: 10.1007/s12035-018-1049-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Abstract
Voltage-gated calcium channels (VGCCs) play a critical role in neuroinflammatory diseases, such as multiple sclerosis (MS). CTK 01512-2 is a recombinant version of the peptide Phα1β derived from the spider Phoneutria nigriventer, which inhibits N-type VGCC/TRPA1-mediated calcium influx. We investigated the effects of this molecule in the mouse model of experimental autoimmune encephalomyelitis (EAE). The effects of CTK 01512-2 were compared to those displayed by ziconotide-a selective N-type VGCC blocker clinically used for chronic pain-and fingolimod-a drug employed for MS treatment. The intrathecal (i.t.) treatment with CTK 01512-2 displayed beneficial effects, by preventing nociception, body weight loss, splenomegaly, MS-like clinical and neurological scores, impaired motor coordination, and memory deficits, with an efficacy comparable to that observed for ziconotide and fingolimod. This molecule displayed a favorable profile on EAE-induced neuroinflammatory changes, including inflammatory infiltrate, demyelination, pro-inflammatory cytokine production, glial activation, and glucose metabolism in the brain and spinal cord. The recovery of spatial memory, besides a reduction of serum leptin levels, allied to central and peripheral elevation of the anti-inflammatory cytokine IL-10, was solely modulated by CTK 01512-2, dosed intrathecally. The intravenous (i.v.) administration of CTK 01512-2 also reduced the EAE-elicited MS-like symptoms, similarly to that seen in animals that received fingolimod orally. Ziconotide lacked any significant effect when dosed by i.v. route. Our results indicate that CTK 01512-2 greatly improved the neuroinflammatory responses in a mouse model of MS, with a higher efficacy when compared to ziconotide, pointing out this molecule as a promising adjuvant for MS management.
Collapse
Affiliation(s)
- Rodrigo B M Silva
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.,Escola de Ciências da Saúde, Curso de Graduação em Biomedicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
| | - Gianina T Venturin
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Jaderson C da Costa
- Centro de Pesquisa Pré-Clínica, Instituto do Cérebro do Rio Grande do Sul - Brain Institute (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - Marcus V Gomez
- Núcleo de Pós-Graduação, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Belo Horizonte, 30150-240, Brazil
| | - Maria M Campos
- Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Centro de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil. .,Escola de Ciências da Saúde, Curso de Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil. .,Escola de Ciências da Saúde, Programa de Pós-Graduação em Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| |
Collapse
|
4
|
Racemic X-ray structure of L-type calcium channel antagonist Calciseptine prepared by total chemical synthesis. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9198-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
González-Ramírez R, Felix R. Transcriptional regulation of voltage-gated Ca 2+ channels. Acta Physiol (Oxf) 2018; 222. [PMID: 28371478 DOI: 10.1111/apha.12883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022]
Abstract
The transcriptional regulation of voltage-gated Ca2+ (CaV ) channels is an emerging research area that promises to improve our understanding of how many relevant physiological events are shaped in the central nervous system, the skeletal muscle and other tissues. Interestingly, a picture of how transcription of CaV channel subunit genes is controlled is evolving with the identification of the promoter regions required for tissue-specific expression and the identification of transcription factors that control their expression. These promoters share several characteristics that include multiple transcriptional start sites, lack of a TATA box and the presence of elements conferring tissue-selective expression. Likewise, changes in CaV channel expression occur throughout development, following ischaemia, seizures or chronic drug administration. This review focuses on insights achieved regarding the control of CaV channel gene expression. To further understand the complexities of expression and to increase the possibilities of detecting CaV channel alterations causing human disease, a deeper knowledge on the structure of the 5' upstream regions of the genes encoding these remarkable proteins will be necessary.
Collapse
Affiliation(s)
- R. González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad; Hospital General ‘Dr. Manuel Gea González’; Secretaría de Salud; Ciudad de México México
| | - R. Felix
- Departmento de Biología Celular; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN); Ciudad de México México
| |
Collapse
|
6
|
SUMOylation and calcium signalling: potential roles in the brain and beyond. Neuronal Signal 2017; 1:NS20160010. [PMID: 32714579 PMCID: PMC7373246 DOI: 10.1042/ns20160010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/23/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification implicated in alterations to protein expression, localization and function. Despite a number of nuclear roles for SUMO being well characterized, this process has only started to be explored in relation to membrane proteins, such as ion channels. Calcium ion (Ca2+) signalling is crucial for the normal functioning of cells and is also involved in the pathophysiological mechanisms underlying relevant neurological and cardiovascular diseases. Intracellular Ca2+ levels are tightly regulated; at rest, most Ca2+ is retained in organelles, such as the sarcoplasmic reticulum, or in the extracellular space, whereas depolarization triggers a series of events leading to Ca2+ entry, followed by extrusion and reuptake. The mechanisms that maintain Ca2+ homoeostasis are candidates for modulation at the post-translational level. Here, we review the effects of protein SUMOylation, including Ca2+ channels, their proteome and other proteins associated with Ca2+ signalling, on vital cellular functions, such as neurotransmission within the central nervous system (CNS) and in additional systems, most prominently here, in the cardiac system.
Collapse
|
7
|
Sandoval A, Duran P, Gandini MA, Andrade A, Almanza A, Kaja S, Felix R. Regulation of L-type Ca V1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway. Cell Calcium 2017; 66:1-9. [PMID: 28807144 DOI: 10.1016/j.ceca.2017.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/03/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion.
Collapse
Affiliation(s)
| | - Paz Duran
- Departamento de Biología Celular, Cinvestav-IPN, Ciudad de México, Mexico
| | - María A Gandini
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Angélica Almanza
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Simon Kaja
- Department of Ophtalmology and Molecular Pharmacology & Therapeutics, Loyola University, Chicago, Strich School of Medicine, Maywood, IL, USA
| | - Ricardo Felix
- Departamento de Biología Celular, Cinvestav-IPN, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Zamponi GW. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 2015; 15:19-34. [DOI: 10.1038/nrd.2015.5] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Garza-López E, González-Ramírez R, Gandini MA, Sandoval A, Felix R. The familial hemiplegic migraine type 1 mutation K1336E affects direct G protein-mediated regulation of neuronal P/Q-type Ca2+ channels. Cephalalgia 2013; 33:398-407. [PMID: 23430985 DOI: 10.1177/0333102412475236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Familial hemiplegic migraine type 1 (FHM-1) is an autosomal dominant form of migraine with aura characterized by recurrent migraine, hemiparesis and ataxia. FHM-1 has been linked to missense mutations in the CACNA1A gene encoding the pore-forming subunit of the neuronal voltage-gated P/Q-type Ca(2+) channel (CaV2.1α1). METHODS Here, we explored the effects of the FHM-1 K1336E mutation on G protein-dependent modulation of the recombinant P/Q-type channel. The mutation was introduced into the human CaV2.1α1 subunit and its functional consequences investigated after heterologous expression in HEK-293 cells using patch-clamp recordings. RESULTS Functional analysis of the K1336E mutation revealed a reduction of Ca(2+) current densities, a ∼10 mV left-shift in the current-voltage relationship, and the slowing of current inactivation kinetics. When co-expressed along with the human μ-opioid receptor, application of the agonist DAMGO inhibited whole-cell currents through both the wild-type and the mutant channels. Prepulse facilitation was also reduced by the K1336E mutation. Likewise, the kinetic analysis of the onset and decay of facilitation showed that the mutation affects the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex. CONCLUSIONS These results suggest that the extent of G-protein-mediated inhibition is significantly reduced in the K1336E mutant CaV2.1 Ca(2+) channels. This alteration would contribute to render the neuronal network hyperexcitable, possibly as a consequence of reduced presynaptic inhibition, and may help to explain some aspects of the FHM-1 pathophysiology.
Collapse
Affiliation(s)
- Edgar Garza-López
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute Cinvestav-IPN, Mexico
| | | | | | | | | |
Collapse
|
10
|
Gandini MA. Channeling headache: novel findings in the study of Ca(2+)-channels and FHM-1. Channels (Austin) 2012; 6:414-5. [PMID: 22991044 DOI: 10.4161/chan.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.
Collapse
Affiliation(s)
- María A Gandini
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
11
|
Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of Ca(V)2.1 voltage-gated calcium channels. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1238-46. [PMID: 22549042 DOI: 10.1016/j.bbadis.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of Ca(V)2.1 voltage-gated Ca(2+) channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human Ca(V)2.1α(1) subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK-293) cells using patch-clamp recordings. When co-expressed along with the human μ-opioid receptor, application of the agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant Ca(V)2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex, suggesting that the G protein-Ca(2+) channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.
Collapse
|
12
|
Gandini MA, Felix R. Functional interactions between voltage-gated Ca(2+) channels and Rab3-interacting molecules (RIMs): new insights into stimulus-secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:551-8. [PMID: 22198390 DOI: 10.1016/j.bbamem.2011.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
Stimulus-secretion coupling is a complex set of intracellular reactions initiated by an external stimulus that result in the release of hormones and neurotransmitters. Under physiological conditions this signaling process takes a few milliseconds, and to minimize delays cells have developed a formidable integrated network, in which the relevant molecules are tightly packed on the nanometer scale. Active zones, the sites of release, are composed of several different proteins including voltage-gated Ca(2+) (Ca(V)) channels. It is well acknowledged that hormone and neurotransmitter release is initiated by the activation of these channels located close to docked vesicles, though the mechanisms that enrich channels at release sites are largely unknown. Interestingly, Rab3 binding proteins (RIMs), a diverse multidomain family of proteins that operate as effectors of the small G protein Rab3 involved in secretory vesicle trafficking, have recently identified as binding partners of Ca(V) channels, placing both proteins in the center of an interaction network in the molecular anatomy of the active zones that influence different aspects of secretion. Here, we review recent evidences providing support for the notion that RIMs directly bind to the pore-forming and auxiliary β subunits of Ca(V) channels and with RIM-binding protein, another interactor of the channels. Through these interactions, RIMs regulate the biophysical properties of the channels and their anchoring relative to active zones, significantly influencing hormone and neurotransmitter release.
Collapse
Affiliation(s)
- María A Gandini
- Department of Cell Biology, National Polytechnic Institute, Mexico City, Mexico
| | | |
Collapse
|
13
|
Interfacial tension of the lipid membrane formed from phosphatidylcholine-decanoic acid and phosphatidylcholine-decylamine systems. J Membr Biol 2011; 241:103-8. [PMID: 21559936 PMCID: PMC3096776 DOI: 10.1007/s00232-011-9366-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/22/2011] [Indexed: 11/20/2022]
Abstract
Interfacial tension has been determined for phosphatidylcholine (PC)–decanoic acid (DA) and PC–decylamine (DE) membranes. PC (lecithin), DA and DE were used in the experiments; the interfacial tension values of the pure components are 1.62 × 10−3, −2.38 × 10−2 and −3.88 × 10−2 N/m (hypothetical values for DA and DE), respectively. The 1:1 complexes were formed during formation of PC–DA and PC–DE membranes. The following parameters describing the complexes were determined: the surface concentrations of the lipid membranes formed from these complexes, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ A_{3}^{ - 1} $$\end{document}; the interfacial tensions of such membranes, γ3; and the stability constants of these complexes, K.
Collapse
|
14
|
[Human calcium channelopathies. Voltage-gated Ca(2+) channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders]. DER NERVENARZT 2008; 79:426-36. [PMID: 18210049 DOI: 10.1007/s00115-007-2398-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Voltage-gated calcium channels are key components in a variety of physiological processes. Within the last decade an increasing number of voltage-gated Ca(2+) channelopathies in both humans and animal models has been described, most of which are related to the neurologic and muscular system. In humans, mutations were found in L-type Ca(v)1.2 and Ca(v)1.4 Ca(2+) channels as well as the non-L-type Ca(v)2.1 and T-type Ca(v)3.2 channels, resulting in altered electrophysiologic properties. Based on their widespread distribution within the CNS, voltage-gated calcium channels are of particular importance in the etiology and pathogenesis of various forms of epilepsy and neuropsychiatric disorders. In this review we characterise the different human Ca(2+) channelopathies known so far, further illuminating basic pathophysiologic mechanisms and clinical aspects.
Collapse
|
15
|
Ceruti S, Fumagalli M, Villa G, Verderio C, Abbracchio MP. Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 2007; 43:576-90. [PMID: 18031810 DOI: 10.1016/j.ceca.2007.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/23/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Receptors for extracellular nucleotides (the P2X-calcium channels and the phospholipase C-coupled P2Y receptors) play key roles in pain signaling, but little is known on their function in trigeminal ganglia, whose hyperactivation leads to the development of migraine pain. Here we characterize calcium signaling via P2X(3) and P2Y receptors in primary mouse neuron-glia trigeminal cultures. Comparison with intact ganglion showed that, in dissociated cultures, sensory neurons retain, at least in part, their physical relationships with satellite glia. RT-PCR indicated expression of P2X(2)/P2X(3) (confirmed by immunocytochemistry) and of all cloned P2Y receptors. Single-cell calcium imaging with subtype-selective P2-agonists/antagonists revealed presence of functional neuronal P2X(3), as well as of ADP-sensitive P2Y(1,12,13) and UTP-activated P2Y(2)/P2Y(4) receptors on both neurons and glia. Calcium responses were much higher in glia, that also responded to UDP, suggesting functional P2Y(6) receptors. To study whether trigeminal ganglia P2 receptors are modulated upon treatment with pro-inflammatory agents, cultures were acutely (up to 3 min) or chronically (24 h) exposed to bradykinin. This resulted in potentiation of algogenic P2X(3) receptor-mediated calcium responses followed by their down-regulation at 24 h. At this exposure time, P2Y receptors responses in satellite glia were instead upregulated, suggesting a complex modulation of P2 receptors in pain signaling.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
16
|
Abo-Dalo B, Kim HG, Roes M, Stefanova M, Higgins A, Shen Y, Mundlos S, Quade BJ, Gusella JF, Kutsche K. Extensive molecular genetic analysis of the 3p14.3 region in patients with Zimmermann-Laband syndrome. Am J Med Genet A 2007; 143A:2668-74. [DOI: 10.1002/ajmg.a.32034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|