1
|
Ratajczak MZ, Suszyńska M. Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine? ACTA ACUST UNITED AC 2013; 44:161-170. [PMID: 24068834 DOI: 10.1016/j.achaem.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Katedra i Zakład Fizjologii Pomorskiego Uniwersytetu Medycznego, Kierownik: prof. dr hab. n. med. Mariusz Z. Ratajczak, Szczecin, Polska
| | | |
Collapse
|
2
|
Franck D, Gil ES, Adam RM, Kaplan DL, Chung YG, Estrada CR, Mauney JR. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS One 2013; 8:e56237. [PMID: 23409160 PMCID: PMC3567020 DOI: 10.1371/journal.pone.0056237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/11/2013] [Indexed: 01/01/2023] Open
Abstract
Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results demonstrate that silk scaffolds support primary and pluripotent cell responses pertinent to bladder tissue engineering and that scaffold morphology and fibronectin coatings influence these processes.
Collapse
Affiliation(s)
- Debra Franck
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Eun Seok Gil
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Yeun Goo Chung
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Carlos R. Estrada
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua R. Mauney
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Hmadcha A, Abdelkrim H, Domínguez-Bendala J, Juan DB, Wakeman J, Jane W, Arredouani M, Mohamed A, Soria B, Bernat S. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med 2009; 13:1464-75. [PMID: 19583810 PMCID: PMC3828859 DOI: 10.1111/j.1582-4934.2009.00837.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells have fascinated the scientific and clinical communities for over a century. Despite the controversy that surrounds this field, it is clear that stem cells have the potential to revolutionize medicine. However, a number of significant hurdles still stand in the way of the realization of this potential. Chiefly among these are safety concerns, differentiation efficiency and overcoming immune rejection. Here we review current progress made in this field to optimize the safe use of stem cells with particular emphasis on prospective interventions to deal with challenges generated by immune rejection.
Collapse
Affiliation(s)
- Abdelkrim Hmadcha
- Department of Cell Therapy and Regenerative Medicine, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Sevilla, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|