1
|
Liang J, Wei J, Cao J, Qian J, Gao R, Li X, Wang D, Gu Y, Dong L, Yu J, Zhao B, Wang X. In-organoid single-cell CRISPR screening reveals determinants of hepatocyte differentiation and maturation. Genome Biol 2023; 24:251. [PMID: 37907970 PMCID: PMC10617096 DOI: 10.1186/s13059-023-03084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Harnessing hepatocytes for basic research and regenerative medicine demands a complete understanding of the genetic determinants underlying hepatocyte differentiation and maturation. Single-cell CRISPR screens in organoids could link genetic perturbations with parallel transcriptomic readout in single cells, providing a powerful method to delineate roles of cell fate regulators. However, a big challenge for identifying key regulators during data analysis is the low expression levels of transcription factors (TFs), which are difficult to accurately estimate due to noise and dropouts in single-cell sequencing. Also, it is often the changes in TF activities in the transcriptional cascade rather than the expression levels of TFs that are relevant to the cell fate transition. RESULTS Here, we develop Organoid-based Single-cell CRISPR screening Analyzed with Regulons (OSCAR), a framework using regulon activities as readouts to dissect gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we map transcriptomes in 80,576 cells upon 246 perturbations associated with transcriptional regulation of hepatocyte formation. Using OSCAR, we identify known and novel positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse and human liver organoids promote hepatocyte differentiation by specific upregulation of liver metabolic genes and pathways, and conditional knockout of Ubr5 in mouse liver delays hepatocyte maturation. CONCLUSIONS Altogether, we provide a framework to explore lineage specifiers in a rapid and systematic manner, and identify hepatocyte determinators with potential clinical applications.
Collapse
Affiliation(s)
- Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Qian
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Ran Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Xiaoyu Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Yani Gu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, 210023, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, 650500, China.
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
- Institute of Clinical Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Translational Medicine Center, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
2
|
Qu F, Li W, Xu J, Zhang R, Ke J, Ren X, Meng X, Qin L, Zhang J, Lu F, Zhou X, Luo X, Zhang Z, Wang M, Wu G, Pei D, Chen J, Cui G, Suo S, Peng G. Three-dimensional molecular architecture of mouse organogenesis. Nat Commun 2023; 14:4599. [PMID: 37524711 PMCID: PMC10390492 DOI: 10.1038/s41467-023-40155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Fangfang Qu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
| | - Wenjia Li
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, 510005, Guangzhou, Guangdong, China
| | - Jian Xu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Ruifang Zhang
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Jincan Ke
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Xiaodie Ren
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xiaogao Meng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
- Life Science and Medicine, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Lexin Qin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Jingna Zhang
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Fangru Lu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xin Zhou
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
| | - Xi Luo
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Zhen Zhang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Minhan Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guangming Wu
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China
| | - Guizhong Cui
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China.
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China.
- School of Basic Medical Sciences, Guangzhou Medical University, 510005, Guangzhou, Guangdong, China.
| | - Shengbao Suo
- Guangzhou Laboratory, 510005, Guangzhou, Guangdong, China.
- The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, 510005, Guangzhou, Guangdong, China.
| | - Guangdun Peng
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou, China.
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
3
|
Matsuguchi S, Hirai Y. Syntaxin4, P-cadherin, and CCAAT enhancer binding protein β as signaling elements in the novel differentiation pathway for cultured embryonic stem cells. Biochem Biophys Res Commun 2023; 672:27-35. [PMID: 37331168 DOI: 10.1016/j.bbrc.2023.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Pluripotent stem cells possess the potential to differentiate into all three germ layers. However, upon removal of the stemness factors, pluripotent stem cells, such as embryonic stem cells (ESCs), exhibit EMT-like cell behavior and lose stemness signatures. This process involves the membrane translocation of the t-SNARE protein syntaxin4 (Stx4) and the expression of the intercellular adhesion molecule P-cadherin. The forced expression of either of these elements induces the emergence of such phenotypes even in the presence of stemness factors. Interestingly, extracellular Stx4, but not P-cadherin, appears to induce a significant upregulation of the gastrulation-related gene brachyury, along with a slight upregulation of the smooth muscle cell-related gene ACTA2 in ESCs. Furthermore, our findings reveal that extracellular Stx4 plays a role in preventing the elimination of CCAAT enhancer binding protein β (C/EBPβ). Notably, the forced overexpression of C/EBPβ led to the downregulation of brachyury and a significant upregulation of ACTA2 in ESCs. These observations suggest that extracellular Stx4 contributes to early mesoderm induction while simultaneously activating an element that alters the differentiation state. The fact that a single differentiation cue can elicit multiple differentiation responses may reflect the challenges associated with achieving sensitive and directed differentiation in cultured stem cells.
Collapse
Affiliation(s)
- Shuji Matsuguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| | - Yohei Hirai
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
4
|
Menezes PR, Trufen CEM, Lichtenstein F, Pellegrina DVDS, Reis EM, Onuki J. Transcriptome profile analysis reveals putative molecular mechanisms of 5-aminolevulinic acid toxicity. Arch Biochem Biophys 2023; 738:109540. [PMID: 36746260 DOI: 10.1016/j.abb.2023.109540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/23/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
5-aminolevulinic acid (5-ALA) is the first precursor of the heme biosynthesis pathway, accumulated in acute intermittent porphyria (AIP), an inherited metabolic disease characterized by porphobilinogen deaminase deficiency. An increased incidence of hepatocellular carcinoma (HCC) has been reported as a long-term manifestation in symptomatic AIP patients. 5-ALA is an α-aminoketone prone to oxidation, yielding reactive oxygen species and 4,5-dioxovaleric acid. A high concentration of 5-ALA presents deleterious pro-oxidant potential. It can induce apoptosis, DNA damage, mitochondrial dysfunction, and altered expression of carcinogenesis-related proteins. Several hypotheses of the increased risk of HCC rely on the harmful effect of elevated 5-ALA in the liver of AIP patients, which could promote a pro-carcinogenic environment. We investigated the global transcriptional changes and perturbed molecular pathways in HepG2 cells following exposure to 5-ALA 25 mM for 2 h and 24 h using DNA microarray. Distinct transcriptome profiles were observed. 5-ALA '25 mM-2h' upregulated 10 genes associated with oxidative stress response and carcinogenesis. Enrichment analysis of differentially expressed genes by KEGG, Reactome, MetaCore™, and Gene Ontology, showed that 5-ALA '25 mM-24h' enriched pathways involved in drug detoxification, oxidative stress, DNA damage, cell death/survival, cell cycle, and mitochondria dysfunction corroborating the pro-oxidant properties of 5-ALA. Furthermore, our results disclosed other possible processes such as senescence, immune responses, endoplasmic reticulum stress, and also some putative effectors, such as sequestosome, osteopontin, and lon peptidase 1. This study provided additional knowledge about molecular mechanisms of 5-ALA toxicity which is essential to a deeper understanding of AIP and HCC pathophysiology. Furthermore, our findings can contribute to improving the efficacy of current therapies and the development of novel biomarkers and targets for diagnosis, prognosis, and therapeutic strategies for AHP/AIP and associated HCC.
Collapse
Affiliation(s)
- Patricia Regina Menezes
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Carlos Eduardo Madureira Trufen
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Centro de Excelência para Descoberta de Novos Alvos Moleculares, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Flavio Lichtenstein
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Centro de Excelência para Descoberta de Novos Alvos Moleculares, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil
| | - Janice Onuki
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Centro de Excelência para Descoberta de Novos Alvos Moleculares, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Feng R, Liebe R, Weng HL. Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2023; 7:47-55. [PMID: 39959701 PMCID: PMC11791834 DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Acute liver failure (ALF) is a medical emergency due to massive hepatocyte loss. In such a harsh condition, maintaining transcriptional regulation in the remaining hepatocytes while activating similar transcription factor networks in liver progenitor cells (LPCs) to ensure essential liver functions are two critical processes to rescue patients from liver failure and death. In this review, we discuss the formation and functions of transcription networks in ALF and liver development. We focus on a hierarchical network of transcription factors that responds to different pathophysiological circumstances: (1) Under normal circumstances, pioneer factor forkhead box protein A2 (FOXA2) coordinates several constitutive hepatic transcription factors, such as hepatic nuclear factor 4 alpha (HNF4α) and CCAAT-enhancer binding protein α (C/EBPα), which ensure normal liver function; (2) When the expression of both HNF4α and C/EBPα in hepatocytes are disrupted by severe inflammation, retinoic acid receptor (RAR) is the alternative transcription factor that compensates for their absence; (3) When massive hepatic necrosis occurs, a similar transcription network including FOXA2 and HNF4α, is activated as a "rescue network" in LPCs to maintain vital liver functions when hepatocytes fail, and thus ensures survival. Expression of these master transcription factors in hepatocytes and LPCs is tightly regulated by hormone signals and inflammation. The performance of this hierarchical transcription network, in particularly the "rescue network" described above, significantly affects the clinical outcome of ALF.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Berasain C, Arechederra M, Argemí J, Fernández-Barrena MG, Avila MA. Loss of liver function in chronic liver disease: An identity crisis. J Hepatol 2023; 78:401-414. [PMID: 36115636 DOI: 10.1016/j.jhep.2022.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Adult hepatocyte identity is constructed throughout embryonic development and fine-tuned after birth. A multinodular network of transcription factors, along with pre-mRNA splicing regulators, define the transcriptome, which encodes the proteins needed to perform the complex metabolic and secretory functions of the mature liver. Transient hepatocellular dedifferentiation can occur as part of the regenerative mechanisms triggered in response to acute liver injury. However, persistent downregulation of key identity genes is now accepted as a strong determinant of organ dysfunction in chronic liver disease, a major global health burden. Therefore, the identification of core transcription factors and splicing regulators that preserve hepatocellular phenotype, and a thorough understanding of how these networks become disrupted in diseased hepatocytes, is of high clinical relevance. In this context, we review the key players in liver differentiation and discuss in detail critical factors, such as HNF4α, whose impairment mediates the breakdown of liver function. Moreover, we present compelling experimental evidence demonstrating that restoration of core transcription factor expression in a chronically injured liver can reset hepatocellular identity, improve function and ameliorate structural abnormalities. The possibility of correcting the phenotype of severely damaged and malfunctional livers may reveal new therapeutic opportunities for individuals with cirrhosis and advanced liver disease.
Collapse
Affiliation(s)
- Carmen Berasain
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| | - Maria Arechederra
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Josepmaria Argemí
- Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain; Liver Unit, Clinica Universidad de Navarra, Pamplona, Spain
| | - Maite G Fernández-Barrena
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra, IdiSNA, Pamplona, Spain.
| |
Collapse
|
7
|
Darvishi E, Ghamsari L, Leong SF, Ramirez R, Koester M, Gallagher E, Yu M, Mason JM, Merutka G, Kappel BJ, Rotolo JA. Anticancer Activity of ST101, A Novel Antagonist of CCAAT/Enhancer Binding Protein β. Mol Cancer Ther 2022; 21:1632-1644. [PMID: 36121385 PMCID: PMC9630826 DOI: 10.1158/1535-7163.mct-21-0962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
CCAAT/enhancer binding protein β (C/EBPβ) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPβ dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPβ that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPβ, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPβ degradation. ST101 exposure attenuates transcription of C/EBPβ target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPβ-dependent cancers.
Collapse
Affiliation(s)
- Emad Darvishi
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Lila Ghamsari
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Siok F. Leong
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Ricardo Ramirez
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Mark Koester
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Erin Gallagher
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Miao Yu
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M. Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Gene Merutka
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Barry J. Kappel
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528
| | - Jim A. Rotolo
- Sapience Therapeutics, Inc. 500 Mamaroneck Ave. Suite 320, Harrison, NY 10528, Corresponding Author (, telephone: 914-607-6935)
| |
Collapse
|
8
|
Krumm J, Sekine K, Samaras P, Brazovskaja A, Breunig M, Yasui R, Kleger A, Taniguchi H, Wilhelm M, Treutlein B, Camp JG, Kuster B. High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Rep 2022; 38:110604. [PMID: 35354033 DOI: 10.1016/j.celrep.2022.110604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/29/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Agnieska Brazovskaja
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Markus Breunig
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-004, Japan; Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Computational Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - J Gray Camp
- Institute of Molecular and Clinical Ophthalmology Basel, 4056 Basel, Switzerland
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
9
|
Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021; 10:cells10082026. [PMID: 34440795 PMCID: PMC8391549 DOI: 10.3390/cells10082026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
During liver organogenesis, cellular transcriptional profiles are constantly reshaped by the action of hepatic transcriptional regulators, including FoxA1-3, GATA4/6, HNF1α/β, HNF4α, HNF6, OC-2, C/EBPα/β, Hex, and Prox1. These factors are crucial for the activation of hepatic genes that, in the context of compact chromatin, cannot access their targets. The initial opening of highly condensed chromatin is executed by a special class of transcription factors known as pioneer factors. They bind and destabilize highly condensed chromatin and facilitate access to other "non-pioneer" factors. The association of target genes with pioneer and non-pioneer transcription factors takes place long before gene activation. In this way, the underlying gene regulatory regions are marked for future activation. The process is called "bookmarking", which confers transcriptional competence on target genes. Developmental bookmarking is accompanied by a dynamic maturation process, which prepares the genomic loci for stable and efficient transcription. Stable hepatic expression profiles are maintained during development and adulthood by the constant availability of the main regulators. This is achieved by a self-sustaining regulatory network that is established by complex cross-regulatory interactions between the major regulators. This network gradually grows during liver development and provides an epigenetic memory mechanism for safeguarding the optimal expression of the regulators.
Collapse
Affiliation(s)
- Evangelia C. Tachmatzidi
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ourania Galanopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Correspondence:
| |
Collapse
|
10
|
Setten RL, Chomchan P, Epps EW, Burnett JC, Rossi JJ. CRED9: A differentially expressed elncRNA regulates expression of transcription factor CEBPA. RNA (NEW YORK, N.Y.) 2021; 27:rna.078752.121. [PMID: 34039742 PMCID: PMC8284328 DOI: 10.1261/rna.078752.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Enhancer RNAs (eRNA) are non-coding transcripts produced from active enhancers and have potential gene regulatory function. CCAAT enhancer-binding protein alpha (CEBPA) is a transcription factor generally involved in metabolism, cell cycle inhibition, hematopoiesis, adipogenesis, hepatogenesis, and is associated with tumorigenesis. In this study, we demonstrate that an enhancer-associated long non-coding RNA (elncRNA), transcribed from an enhancer located 9kb downstream from the transcriptional start site (TSS) of CEBPA, positively regulates the expression of CEBPA. As a result, we named this elncRNA 'CEBPA regulatory elncRNA downstream 9kb' or 'CRED9'. CRED9 expression level positively correlates with CEBPA mRNA expression across multiple cell lines as detected by RT droplet digital PCR. Knockdown of CRED9 resulted in a reduction of CEBPA mRNA expression in Hep3B cells. Additionally, CRED9 knockdown in Hep3B and HepG2 cells resulted in lower CEBPA protein expression. We also found that knockdown of CRED9 in Hep3B cells caused a 57.8% reduction in H3K27ac levels at the +9kb CEBPA enhancer. H3K27ac has previously been described as a marker of active enhancers. Taken together, the evidence presented here supports a previously proposed model whereby, in some contexts, eRNA transcripts are necessary to amplify and maintain H3K27ac levels at a given enhancer. Ultimately, this study adds to the growing body of evidence that elncRNA transcripts have important roles in enhancer function and gene regulation.
Collapse
|
11
|
Pang C, Miao H, Zuo Y, Guo N, Sun D, Li B. C/EBPβ enhances efficacy of sorafenib in hepatoblastoma. Cell Biol Int 2021; 45:1897-1905. [PMID: 33945665 DOI: 10.1002/cbin.11624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/23/2021] [Accepted: 05/01/2021] [Indexed: 12/29/2022]
Abstract
Hepatoblastoma (HB) is the predominant hepatic neoplasm in infants and young children. Sorafenib has been used to treat adult and pediatric hepatocellular carcinoma. However, efficacy of monotherapy of sorafenib in HB is not sustained. In this study, we tested a possible combinatory therapy of sorafenib with the CCAAT/enhancer-binding proteins (C/EBP) overexpression in HB cell line. Firstly, we evaluated the expression level of C/EBPβ in the patients with HB by analyzing The Cancer Genome Atlas data. Lower level of C/EBPβ was observed in tumor tissues in comparison with matched normal tissues. Next, we observed that combination of sorafenib and C/EBPβ overexpression led to dramatic growth and migration inhibition of live tumor cells which implied promising probability for clinical trial. Mechanistically, C/EBPβ which can be downregulated by Ras v12, augmented messenger RNA and protein levels of p53. These data suggested that a combination of sorafenib and C/EBPβ overexpression inhibited tumor growth synergistically and provided a promising approach to treat HB.
Collapse
Affiliation(s)
- Chong Pang
- Departments of Pharmacology, Chengde Medical University, Chengde, Hebei, China
| | - Hao Miao
- Functional Experiment Center, Chengde Medical University, Chengde, Hebei, China
| | - Yanzhen Zuo
- Departments of Pharmacology, Chengde Medical University, Chengde, Hebei, China
| | - Nana Guo
- Departments of Pharmacology, Chengde Medical University, Chengde, Hebei, China
| | - Dayong Sun
- Tumor Radiation and Chemotherapy Center, Chengde Central Hospital, Chengde, Hebei, China
| | - Baoqun Li
- Departments of Pharmacology, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
12
|
Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20:77-88. [PMID: 32727636 PMCID: PMC7650013 DOI: 10.3727/105221620x15960509906371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells are key players in acute immune responses that are evidenced by degranulation leading to a heightened allergic response. Activation of mast cells can trigger a number of different pathways contributing to metabolic conditions and disease progression. Aging results in irreversible physiological changes affecting all organs, including the liver. The liver undergoes senescence, changes in protein expression, and cell signaling phenotypes during aging, which regulate disease progression. Cellular senescence contributes to the age-related changes. Unsurprisingly, mast cells also undergo age-related changes in number, localization, and activation throughout their lifetime, which adversely affects the etiology and progression of many physiological conditions including liver diseases. In this review, we discuss the role of mast cells during aging, including features of aging (e.g., senescence) in the context of biliary diseases such as primary biliary cholangitis and primary sclerosing cholangitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Debjyoti Kundu
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Kennedy
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- †Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Alpini
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
13
|
Nolte MJ, Jing P, Dewey CN, Payseur BA. Giant Island Mice Exhibit Widespread Gene Expression Changes in Key Metabolic Organs. Genome Biol Evol 2020; 12:1277-1301. [PMID: 32531054 PMCID: PMC7487164 DOI: 10.1093/gbe/evaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.
Collapse
Affiliation(s)
- Mark J Nolte
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin - Madison
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin - Madison
| |
Collapse
|
14
|
PDE2A Is Indispensable for Mouse Liver Development and Hematopoiesis. Int J Mol Sci 2020; 21:ijms21082902. [PMID: 32326334 PMCID: PMC7215450 DOI: 10.3390/ijms21082902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A−/−) is embryonic lethal. Notably, livers of PDE2A−/− embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A−/− liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A−/− livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A−/− embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A−/− embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.
Collapse
|
15
|
Lin C, Ding J, Bar-Joseph Z. Inferring TF activation order in time series scRNA-Seq studies. PLoS Comput Biol 2020; 16:e1007644. [PMID: 32069291 PMCID: PMC7048296 DOI: 10.1371/journal.pcbi.1007644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Methods for the analysis of time series single cell expression data (scRNA-Seq) either do not utilize information about transcription factors (TFs) and their targets or only study these as a post-processing step. Using such information can both, improve the accuracy of the reconstructed model and cell assignments, while at the same time provide information on how and when the process is regulated. We developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) method which integrates probabilistic modeling of scRNA-Seq data with the ability to assign TFs to specific activation points in the model. TFs are assumed to influence the emission probabilities for cells assigned to later time points allowing us to identify not just the TFs controlling each path but also their order of activation. We tested CSHMM-TF on several mouse and human datasets. As we show, the method was able to identify known and novel TFs for all processes, assigned time of activation agrees with both expression information and prior knowledge and combinatorial predictions are supported by known interactions. We also show that CSHMM-TF improves upon prior methods that do not utilize TF-gene interaction. An important attribute of time series single cell RNA-Seq (scRNA-Seq) data, is the ability to infer continuous trajectories of genes based on orderings of the cells. While several methods have been developed for ordering cells and inferring such trajectories, to date it was not possible to use these to infer the temporal activity of several key TFs. These TFs are are only post-transcriptionally regulated and so their expression does not provide complete information on their activity. To address this we developed the Continuous-State Hidden Markov Models TF (CSHMM-TF) methods that assigns continuous activation time to TFs based on both, their expression and the expression of their targets. Applying our method to several time series scRNA-Seq datasets we show that it correctly identifies the key regulators for the processes being studied. We analyze the temporal assignments for these TFs and show that they provide new insights about combinatorial regulation and the ordering of TF activation. We used several complementary sources to validate some of these predictions and discuss a number of other novel suggestions based on the method. As we show, the method is able to scale to large and noisy datasets and so is appropriate for several studies utilizing time series scRNA-Seq data.
Collapse
Affiliation(s)
- Chieh Lin
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jun Ding
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hopp AK, Grüter P, Hottiger MO. Regulation of Glucose Metabolism by NAD + and ADP-Ribosylation. Cells 2019; 8:cells8080890. [PMID: 31412683 PMCID: PMC6721828 DOI: 10.3390/cells8080890] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/28/2022] Open
Abstract
Cells constantly adapt their metabolic pathways to meet their energy needs and respond to nutrient availability. During the last two decades, it has become increasingly clear that NAD+, a coenzyme in redox reactions, also mediates several ubiquitous cell signaling processes. Protein ADP-ribosylation is a post-translational modification that uses NAD+ as a substrate and is best known as part of the genotoxic stress response. However, there is increasing evidence that NAD+-dependent ADP-ribosylation regulates other cellular processes, including metabolic pathways. In this review, we will describe the compartmentalized regulation of NAD+ biosynthesis, consumption, and regeneration with a particular focus on the role of ADP-ribosylation in the regulation of glucose metabolism in different cellular compartments.
Collapse
Affiliation(s)
- Ann-Katrin Hopp
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Life Science Zurich Graduate School, CH-8057 Zurich, Switzerland
| | - Patrick Grüter
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Identification of a new liver-specific c-type mRNA transcriptional variant for mouse ST3GAL5 (GM3/GM4 synthase). Glycoconj J 2017; 34:651-659. [DOI: 10.1007/s10719-017-9788-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
18
|
James MI. The Future of Genomic Medicine Involves the Maintenance of Sirtuin 1 in Global Populations. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ijmboa.2017.02.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kupsco A, Schlenk D. Developmental expression and regulation of flavin-containing monooxygenase by the unfolded protein response in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:7-13. [PMID: 27612667 DOI: 10.1016/j.cbpc.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/19/2022]
Abstract
Flavin-containing monooxygenases (FMOs) play a key role in xenobiotic metabolism, are regulated by environmental conditions, and are differentially regulated during mammalian development. Japanese medaka (Oryzias latipes) are a common model organism for toxicological studies. The goal of the current research was to characterize developmental expression and regulation of FMOs in Japanese medaka embryos to better understand the role of FMOs in this model species. Five putative medaka fmos were characterized from the medaka genome through the National Center for Biotechnology Information (NCBI) database by protein motifs and alignments, then identified as fmo4, fmo5A, fmo5B, fmo5C and fmo5D for the current study. Fmo gene expression was analyzed at 1dpf, 3dpf, 6dpf and 9dpf and distinct developmental patterns of expression were observed. Fmo4 and fmo5D increased 3-fold during mid organogenesis (6dpf), while fmo5B and fmo5C decreased significantly in early organogenesis (3dpf) and fmo5A was unaltered. Promoter analysis was performed for transcription factor binding sites and indicated regulation by developmental factors and a role for the unfolded protein response in fmo modulation. Fmo regulation by the UPR was assessed with treatments of 1μg/ml, 2μg/ml, and 4μg/ml Tunicamycin (Tm), and 2mM and 4mM dithiothreitol (DTT), well-known inducers of endoplasmic reticulum stress, for 24h from 5-6dpf. High concentrations to Tm induced fmo4 and fmo5A up to two-fold, while DTT significantly decreased expression of fmo5A, fmo5B, and fmo5C. Results suggest that medaka fmos are variably regulated by the UPR during organogenesis with variable developmental expression, and suggesting potential stage-dependent activation or detoxification of xenobiotics.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States.
| | - Daniel Schlenk
- Environmental Toxicology Program, Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Klaassen K, Stankovic B, Kotur N, Djordjevic M, Zukic B, Nikcevic G, Ugrin M, Spasovski V, Srzentic S, Pavlovic S, Stojiljkovic M. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro. J Appl Genet 2016; 58:79-85. [PMID: 27447460 DOI: 10.1007/s13353-016-0359-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/01/2016] [Accepted: 06/30/2016] [Indexed: 11/28/2022]
Abstract
Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.
Collapse
Affiliation(s)
- Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Djordjevic
- Mother and Child Health Care Institute of Serbia "Dr Vukan Cupic", School of Medicine, University of Belgrade, Radoja Dakića 6-8, 11070, Belgrade, Serbia
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Gordana Nikcevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Sanja Srzentic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010, Belgrade, Serbia.
| |
Collapse
|
21
|
Martins IJ. The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer's Disease. Proteomes 2016; 4:proteomes4020014. [PMID: 28248224 PMCID: PMC5217345 DOI: 10.3390/proteomes4020014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
The early diagnosis of Alzheimer’s disease (AD) has become important to the reversal and treatment of neurodegeneration, which may be relevant to premature brain aging that is associated with chronic disease progression. Clinical proteomics allows the detection of various proteins in fluids such as the urine, plasma, and cerebrospinal fluid for the diagnosis of AD. Interest in lipidomics has accelerated with plasma testing for various lipid biomarkers that may with clinical proteomics provide a more reproducible diagnosis for early brain aging that is connected to other chronic diseases. The combination of proteomics with lipidomics may decrease the biological variability between studies and provide reproducible results that detect a community’s susceptibility to AD. The diagnosis of chronic disease associated with AD that now involves genomics may provide increased sensitivity to avoid inadvertent errors related to plasma versus cerebrospinal fluid testing by proteomics and lipidomics that identify new disease biomarkers in body fluids, cells, and tissues. The diagnosis of AD by various plasma biomarkers with clinical proteomics may now require the involvement of lipidomics and genomics to provide interpretation of proteomic results from various laboratories around the world.
Collapse
Affiliation(s)
- Ian James Martins
- School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia.
| |
Collapse
|
22
|
Bunker SK, Dandapat J, Sahoo SK, Roy A, Chainy GBN. Neonatal Persistent Exposure to 6-Propyl-2-thiouracil, a Thyroid-Disrupting Chemical, Differentially Modulates Expression of Hepatic Catalase and C/EBP-β in Adult Rats. J Biochem Mol Toxicol 2015; 30:80-90. [PMID: 26459835 DOI: 10.1002/jbt.21766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023]
Abstract
Persistent exposure of rats to 6-propyl-2-thiouracil (PTU) from birth resulted in decreases in plasma thyroid hormone (TH) levels and hepatic expression of catalase and CCAAT enhancer binding protein β (C/EBP-β). Catalase promoter region (-185 to +52) that contains binding sites for C/EBP-β showed an augmentation in the methylation level along with a change in methylation pattern of CpG islands in response to PTU treatment. PTU withdrawal on 30 days of birth restored TH levels and C/EBP-β to control rats in adulthood. Although catalase expression was restored to some extent in adult rats in response to PTU withdrawal, a permanent change in its promoter CpG methylation pattern was recorded. The results suggest that downregulation of adult hepatic catalase gene in response to persistent neonatal PTU exposure may not solely be attributed to thyroid-disrupting properties of PTU. It is possible that besides thyroid-disrupting behavior, PTU may impair expression of hepatic catalase by altering methylation pattern of its promoter.
Collapse
Affiliation(s)
| | | | - Sunil Kumar Sahoo
- Department of Biotechnology, Utkal University, Bhubaneswar, 751 004, India
| | - Anita Roy
- Department of Biotechnology, Utkal University, Bhubaneswar, 751 004, India
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, 751 004, India
| |
Collapse
|
23
|
Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans 2015; 42:609-16. [PMID: 24849227 DOI: 10.1042/bst20140058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.
Collapse
|
24
|
Sun GY, Dong LY, An W. Involvement of hepatic stimulator substance in the regulation of hepatoblast maturation into hepatocytes in vitro. Stem Cells Dev 2014; 23:1675-87. [PMID: 24640968 DOI: 10.1089/scd.2013.0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatic stimulator substance (HSS), also known as augmenter of liver regeneration (ALR), acts as a hepatotrophic growth factor to promote liver regeneration after liver damage or partial hepatectomy. However, the expression and function of HSS during liver development in mammals remain largely unknown. In this work, the hepatoblasts were isolated from mice at embryonic day 13.5 (E13.5), and HSS expression and its role during hepatoblast maturation were investigated. The results showed that HSS expression was enhanced in the hepatoblasts compared with mouse primary hepatocytes. HSS expression (23 kDa) was significantly decreased if the hepatoblast maturation was induced by a combination of oncostatin M (OSM), dexamethasone (DEX), and hepatocyte growth factor (HGF). We also found that knockdown of HSS expression (mainly 23-kDa isoform) by siRNA promoted hepatoblast maturation and also activated the signal transducer and activator of transcription 3 (STAT3) phosphorylation levels. However, if STAT3 activity was blocked by a small-molecule inhibitor Stattic, then hepatocyte maturation could be abolished, suggesting that STAT3 was most likely a potential molecule responsible for HSS signaling. In summary, our results demonstrated for the first time that HSS might be an active factor participating in the regulation of liver development and hepatocyte maturation.
Collapse
Affiliation(s)
- Guang-Yong Sun
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regeneration Regulation, Capital Medical University , Beijing, China
| | | | | |
Collapse
|
25
|
Qian NS, Liu WH, Lv WP, Xiang X, Su M, Raut V, Chen YL, Dong JH. Upregulated microRNA-92b regulates the differentiation and proliferation of EpCAM-positive fetal liver cells by targeting C/EBPß. PLoS One 2013; 8:e68004. [PMID: 23936298 PMCID: PMC3732262 DOI: 10.1371/journal.pone.0068004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/29/2013] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRNAs) are short noncoding RNAs that negatively regulate gene expression. Although recent evidences have been indicated that their aberrant expression may play an important role in cancer stem cells, the mechanism of their deregulation in neoplastic transformation of liver cancer stem cells (LCSCs) has not been explored. In our study, the HCC model was established in F344 rats by DEN induction. The EpCAM(+) cells were sorted out from unfractionated fetal liver cells and liver cancer cells using the FACS analysis and miRNA expression profiles of two groups were screened through microarray platform. Gain-of-function studies were performed in vitro and in vivo to determine the role of miR-92b on proliferation and differentiation of the hepatic progenitors. In addition, luciferase reporter system and gene function analysis were used to predict miR-92b target. we found that miR-92b was highly downregulated in EpCAM(+) fetal liver cells in expression profiling studies. RT-PCR analysis demonstrated reverse correlation between miR-92b expression and differentiation degree in human HCC samples. Overexpression of miR-92b in EpCAM(+) fetal liver cells significantly increased proliferation and inhibited differentiation as well as in vitro and in vivo studies. Moreover, we verified that C/EBPß is a direct target of miR-92b and contributes to its effects on proliferation and differentiation. We conclude that aberrant expression of miR-92b can result in proliferation increase and differentiation arrest of hepatic progenitors by targeting C/EBPß.
Collapse
Affiliation(s)
- Nian-Song Qian
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, Hainan Branch of PLA General Hospital, Sanya, China
| | - Wei-Hui Liu
- Department of Hepatobiliary Surgery, General Hospital of Chengdu Military Region, Chengdu, China
| | - Wen-Ping Lv
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, Hainan Branch of PLA General Hospital, Sanya, China
| | - Xin Xiang
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, Hainan Branch of PLA General Hospital, Sanya, China
| | - Ming Su
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, Hainan Branch of PLA General Hospital, Sanya, China
| | - Vikram Raut
- Department of Hepatobiliary Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong-Liang Chen
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, Hainan Branch of PLA General Hospital, Sanya, China
| | - Jia-Hong Dong
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Ren G, He Z, Cong P, Chen H, Guo Y, Yu J, Liu Z, Ji Q, Song Z, Chen Y. Peripheral administration of TAT-obestatin can influence the expression of liporegulatory genes but fails to affect food intake in mice. Peptides 2013; 42:8-14. [PMID: 23313740 DOI: 10.1016/j.peptides.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
Obestatin is a 23-amino-acid peptide originally regarded as an anorexigenic factor. However, most of the subsequent studies failed to confirm the initially reported anorexigenic properties of obestatin. Obestatin is incapable of crossing the blood brain barrier (BBB), which may affect its biological function. Here, we report the physiological effects of obestatin in mice after intraperitoneal administration of obestatin conjugated to the cell-permeable peptide TAT, which is capable of delivering different types of proteins through the BBB. Acute peripheral administration of 1 μmol/kg of TAT-obestatin did not influence the 24 h cumulative food intake and body weight gain of mice that were fasted for 18 h. Fed mice were injected intraperitoneally with 100 nmol/kg of TAT-obestatin daily for 25 d. Compared with control groups, on day 3, the gain in body weight was significantly altered; on day 7, abdominal fat mass was remarkably reduced; however, on day 25, there was a surprisingly notable increase in abdominal and epididymal fat mass. In comparison with control groups, on day 25, the expression levels of adiponectin, ADD1, C/EBPα, PPARG and GLUT4 were significantly up-regulated in liver tissues; in white adipose tissue, the expression level of C/EBPα was significantly up-regulated, but adiponectin and GLUT4 were significantly down-regulated. In addition, GPR39, the suspected receptor of obestatin, was up-regulated in white adipose tissue on day 25. These findings suggest that TAT-obestatin might play a role in white adipose tissue metabolism, but its physiological effects on food intake and body weight gain regulation remain unclear.
Collapse
Affiliation(s)
- Guangcai Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kawasaki H, Doi R, Ito K, Shimoda M, Ishida N. The circadian binding of CLOCK protein to the promoter of C/ebpα gene in mouse cells. PLoS One 2013; 8:e58221. [PMID: 23505471 PMCID: PMC3594305 DOI: 10.1371/journal.pone.0058221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/01/2013] [Indexed: 11/30/2022] Open
Abstract
C/EBPα plays important roles in metabolism as well as in the maintenance of energy homeostasis. Here we describe loss of the circadian oscillation of C/ebpα expression in liver of Clock mutant mice. Reporter assays indicate Clock and Bmal significantly induced C/ebpα gene expression whereas Cry suppressed. Real time reporter assays showed that two mutated E-boxes disrupted C/ebpα promoter dependent-oscillation. Chromatin immunoprecipitation suggests Clock can bind to two E-boxes in the C/ebpα promoter with a circadian manner in vivo. Thus, C/ebpα gene transcription is under circadian control of a core clock component, Clock. The data suggests that circadian disturbances may affect metabolic abnormalities through the C/ebpα pathway in liver.
Collapse
Affiliation(s)
- Haruhisa Kawasaki
- Ishida Group of Clock Gene, Biomedical Research Institute, National Institute of Advanced Science and Technology (AIST) 6-5 Central, Tsukuba, Ibaraki, Japan
| | - Ryosuke Doi
- Ishida Group of Clock Gene, Biomedical Research Institute, National Institute of Advanced Science and Technology (AIST) 6-5 Central, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Kumpei Ito
- Ishida Group of Clock Gene, Biomedical Research Institute, National Institute of Advanced Science and Technology (AIST) 6-5 Central, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - Masami Shimoda
- Division of Insect Sciences, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Norio Ishida
- Ishida Group of Clock Gene, Biomedical Research Institute, National Institute of Advanced Science and Technology (AIST) 6-5 Central, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
28
|
Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012; 348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.
Collapse
|
29
|
|
30
|
Insulin-like growth factor 1 (IGF-I) improves hepatic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Biol Int 2012; 35:1169-76. [PMID: 21910691 DOI: 10.1042/cbi20110016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of MSCs (mesenchymal stem cells) to differentiate between other cell types makes these cells an attractive therapeutic tool for cell transplantation. This project was designed to improve transdifferentiation of human MSCs into liver cells using IGF-I (insulin-like growth factor 1) which, despite its important role in liver development, has not been used for in vitro hepatic differentiation. In the present study, the MSCs derived from healthy human bone marrow samples were cultured and characterized by immunophenotyping and differentiation potential into osteoblast and adipocytes. Transdifferentiation into hepatocyte-like cells was performed in the presence/absence of IGF-I in combination with predefined hepatic differentiation cocktail. To evaluate transdifferentiation, morphological features, immuno-cytochemical staining of specific biological markers and hepatic functions were assessed. Morphological assessment and evaluation of glycogen content, albumin and AFP (α-feto protein) expression as well as albumin and urea secretion revealed statistically significant difference between experimental groups compared with the control. Morphology and function (albumin secretion) of IGF-I-treated cells were significantly better than IGF-I-free experimental group. To the best of our knowledge, our study is the first to demonstrate that the combination of IGF-I with the predefined hepatic differentiation cocktail will significantly improve the morphological features of the differentiated cells and albumin secretion.
Collapse
|
31
|
Wang J, Liu X, Li T, Liu C, Zhao Y. Increased hepatic Igf2 gene expression involves C/EBPβ in TCDD-induced teratogenesis in rats. Reprod Toxicol 2011; 32:313-21. [DOI: 10.1016/j.reprotox.2011.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/24/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
|
32
|
Locker J. Transcriptional Control of Hepatocyte Differentiation. MOLECULAR PATHOLOGY LIBRARY 2011. [DOI: 10.1007/978-1-4419-7107-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Sangan CB, Tosh D. Hepatic progenitor cells. Cell Tissue Res 2010; 342:131-7. [PMID: 20957497 DOI: 10.1007/s00441-010-1055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 12/11/2022]
Abstract
Liver diseases are associated with a marked reduction in the viable mass of hepatocytes. The most severe cases of liver disease (liver failure) are treated by orthotopic liver transplantation. One alternative to whole organ transplantation for patients with hepatic failure (and hereditary liver disease) is hepatocyte transplantation. However, there is a serious limitation to the treatment of liver diseases either by whole organ or hepatocyte transplantation, and that is the shortage of organ donors. Therefore, to overcome the problem of organ shortage, additional sources of hepatocytes must be found. Alternative sources of cells for transplantation have been proposed including embryonic stem cells, immortalised liver cells and differentiated cells. One other source of cells for transplantation found in the adult liver is the progeny of stem cells. These cells are termed hepatic progenitor cells (HPCs). The therapeutic potential of HPCs lies in their ability to proliferate and differentiate into hepatocytes and cholangiocytes. However, using HPCs as a cell therapy cannot be exploited fully until the mechanisms governing hepatocyte differentiation are elucidated. Here, we discuss the fundamental cellular and molecular elements required for HPC differentiation to hepatocytes.
Collapse
Affiliation(s)
- Caroline Beth Sangan
- Centre of Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
34
|
Bennett CE, Nsengimana J, Bostock JA, Cymbalista C, Futers TS, Knight BL, McCormack LJ, Prasad UK, Riches K, Rolton D, Scarrott T, Barrett JH, Carter AM. CCAAT/enhancer binding protein alpha, beta and delta gene variants: associations with obesity related phenotypes in the Leeds Family Study. Diab Vasc Dis Res 2010; 7:195-203. [PMID: 20460359 DOI: 10.1177/1479164110366274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE To identify novel polymorphisms in the genes encoding the transcription factors CCAAT/enhancer binding protein alpha, beta and delta ( CEBPA, CEBPB, CEBPD) and investigate associations between polymorphisms and obesity-related phenotypes. METHODS Denaturing high-performance liquid chromatography (HPLC) was used to screen for novel gene variants and polymorphisms were genotyped in stored DNA from participants of the Leeds Family Study (537 subjects from 89 families). Genotype and haplotype analyses were carried out in STATA and PBAT, respectively. RESULTS Twenty-five polymorphisms were identified; 11 in CEBPA, 12 in CEBPB and 2 in CEBPD. Several allelic variants were associated at a nominal 5% level with waist-to-hip ratio (-919G>A in CEBPA, -412G>T and 646C>T in CEBPB), leptin (1558G>A in CEBPA, -1051A>G and 1383T>- in CEBPB) and adiponectin (1382G>T and 1903G>T in CEBPB). Effects of CEBPA and CEBPB allelic variants were independent, but variants within each gene were in linkage disequilibrium. Several associations were observed between other obesity-related traits and allelic variants in CEBPA and CEBPB, but not CEBPD. CONCLUSION These findings suggest that common allelic variants in CEBPA and CEBPB could influence abdominal obesity and related metabolic abnormalities associated with type 2 diabetes and cardiovascular disease in healthy White Northern European families, although results require independent confirmation.
Collapse
Affiliation(s)
- Claire E Bennett
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bonora-Centelles A, Jover R, Mirabet V, Lahoz A, Carbonell F, Castell JV, Gómez-Lechón MJ. Sequential hepatogenic transdifferentiation of adipose tissue-derived stem cells: relevance of different extracellular signaling molecules, transcription factors involved, and expression of new key marker genes. Cell Transplant 2009; 18:1319-40. [PMID: 19660180 DOI: 10.3727/096368909x12483162197321] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue contains a mesenchymal stem cell (MSC) population known as adipose-derived stem cells (ASCs) capable of differentiating into different cell types. Our aim was to induce hepatic transdifferentiation of ASCs by sequential exposure to several combinations of cytokines, growth factors, and hormones. The most efficient hepatogenic protocol includes fibroblastic growth factors (FGF) 2 and 4 and epidermal growth factor (EGF) (step 1), hepatocyte growth factor (HGF), FGF2, FGF4, and nicotinamide (Nic) (step 2), and oncostatin M (OSM), dexamethasone (Dex), and insulin-tranferrin-selenium (step 3). This protocol activated transcription factors [GATA6, Hex, CCAAT/enhancer binding protein alpha and beta (CEBPalpha and beta), peroxisome proliferator-activated receptor-gamma, coactivator 1 alpha (PGC1alpha), and hepatocyte nuclear factor 4 alpha (HNF4alpha)], which promoted a characteristic hepatic phenotype, as assessed by new informative markers for the step-by-step hepatic transdifferentiation of hMSC [early markers: albumin (ALB), alpha-2-macroglobuline (alpha2M), complement protein C3 (C3), and selenoprotein P1 (SEPP1); late markers: cytochrome P450 3A4 (CYP3A4), apolipoprotein E (APOE), acyl-CoA synthetase long-chain family member 1 (ACSL1), and angiotensin II receptor, type 1 (AGTR1)]. The loss of adipose adult stem cell phenotype was detected by losing expression of Thy1 and inhibitor of DNA binding 3 (Id3). The reexpression of phosphoenolpyruvate corboxykinase (PEPCK), apolipoprotein C3 (APOCIII), aldolase B (ALDOB), and cytochrome P450 1A2 (CYP1A2) was achieved by transduction with a recombinant adenovirus for HNF4alpha and finally hepatic functionality was also assessed by analyzing specific biochemical markers. We conclude that ASCs could represent an alternative tool in clinical therapy for liver dysfunction and regenerative medicine.
Collapse
Affiliation(s)
- A Bonora-Centelles
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Fan J, Shen H, Dai Q, Minuk GY, Burzynski FJ, Gong Y. Bone morphogenetic protein-4 induced rat hepatic progenitor cell (WB-F344 cell) differentiation toward hepatocyte lineage. J Cell Physiol 2009; 220:72-81. [PMID: 19229878 DOI: 10.1002/jcp.21731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatic progenitor cells are local stem cells in the liver and they can be differentiated into either hepatocytes or cholangiocytes depending on different stimulations. These stimulations include extracellular growth factors and intracellular transcription factors. Bone morphogenetic protein 4 (BMP4) is a member of transforming growth factor beta (TGF-beta) superfamily and was first identified as growth factor to induce ectopic bone formation from skeletal muscle. Role of BMP4 in the liver is still unclear especially its role in hepatic progenitor cells (HPCs) differentiation. BMP4 was used to stimulate rat HPCs (WB-F344 cells) and differentiation of WB-F344 cells was investigated by reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Both adenovirus delivered BMP4 and recombinant BMP4 were able to induce expression of hepatocyte markers such as albumin, TAT-1, and G6Pase but not cholangiocyte markers such as beta4-integrin and CK19. BMP4 induced differentiation of WB-F344 cells toward hepatocytes was mediated by increase in phosphorylation of Smad1 and ERK1/2. Moreover, BMP4 also stimulated expression of transcription factor--C/EBP-alpha, which involved in differentiation of WB-F344 cells toward hepatocytes. BMP4 is able to stimulate WB-F344 cells differentiation toward hepatocyte lineage.
Collapse
Affiliation(s)
- Jianghong Fan
- Faculty of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Thowfeequ S, Myatt EJ, Tosh D. Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn 2008; 236:3208-17. [PMID: 17948254 DOI: 10.1002/dvdy.21336] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transdifferentiation (or metaplasia) refers to the conversion of one cell type to another. Because transdifferentiation normally occurs between cells that arise from the same region of the embryo, understanding the molecular and cellular events in cell type transformations may help to explain the mechanisms underlying normal development. Here we review examples of transdifferentiation in nature focusing on the possible role of cell type switching in metamorphosis and regeneration. We also examine transdifferentiation in mammals in relation to disease and the use of transdifferentiated cells in cellular therapy.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | | | | |
Collapse
|
39
|
Ueberham E, Lindner R, Kamprad M, Hiemann R, Hilger N, Woithe B, Mahn D, Cross M, Sack U, Gebhardt R, Arendt T, Ueberham U. Oval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuli. J Cell Mol Med 2007; 12:622-38. [PMID: 18053084 PMCID: PMC3822548 DOI: 10.1111/j.1582-4934.2007.00178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Terminal differentiation requires molecules also involved in aging such as the cell cycle inhibitor p16INK4a.Like other organs, the adult liver represents a quiescent organ with terminal differentiated cells, hepatocytes and cholangiocytes. These cells retain the ability to proliferate in response to liver injury or reduction of liver mass. However, under conditions which prevent mitotic activation of hepatocytes, regeneration can occur instead from facultative hepatic stem cells.For therapeutic application a non-toxic activation of this stem cell compartment is required. We have established transgenic mice with conditional overexpression of the cell cycle inhibitor p16INK4a in hepatocytes and have provoked and examined oval cell activation in adult liver in response to a range of proliferative stimuli.We could show that the liver specific expression of p16INK4a leads to a faster differentiation of hepatocytes and an activation of oval cells already in postnatal mice without negative consequences on liver function.
Collapse
Affiliation(s)
- Elke Ueberham
- Institute of Biochemistry, University of Leipzig, Medical Faculty, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Meivar-Levy I, Sapir T, Gefen-Halevi S, Aviv V, Barshack I, Onaca N, Mor E, Ferber S. Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology 2007; 46:898-905. [PMID: 17705277 DOI: 10.1002/hep.21766] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED It is believed that adult tissues in mammals lack the plasticity needed to assume new developmental fates because of the absence of efficient pathways of dedifferentiation. However, the well-documented ability of the transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) to activate pancreatic lineage development and insulin production following ectopic expression in liver suggests a surprising degree of residual plasticity in adult liver cells. This study seeks a mechanistic explanation for the capacity of PDX-1 to endow liver cells with pancreatic characteristics and function. We demonstrate that PDX-1, previously shown to play an essential role in normal pancreatic organogenesis and pancreatic beta-cell function and to possess the potential to activate multiple pancreatic markers in liver, can also direct hepatic dedifferentiation. PDX-1 represses the adult hepatic repertoire of gene expression and activates the expression of the immature hepatic marker alpha-fetoprotein. We present evidence indicating that PDX-1 triggers hepatic dedifferentiation by repressing the key hepatic transcription factor CCAAT/enhancer-binding protein beta. Hepatic dedifferentiation is necessary though not sufficient for the activation of the mature pancreatic repertoire in liver. CONCLUSION Our study suggests a dual role for PDX-1 in liver: inducing hepatic dedifferentiation and activating the pancreatic lineage. The identification of dedifferentiation signals may promote the capacity to endow mature tissues in mammals with the plasticity needed for acquiring novel developmental fates and functions to be implemented in the field of regenerative medicine.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- The Endocrine Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Stem cells are undifferentiated cells that can self-renew and generate specialized (functional) cell types. The remarkable ability of stem cells to differentiate towards functional cells makes them suitable modalities in cellular therapy (which means treating diseases with the body's own cells). Potential targets for cellular therapy include diabetes and liver failure. However, in order for stem cells to be clinically useful, we must learn to identify them and to regulate their differentiation. We will use the intestine as a classical example of a stem cell compartment, and then examine the evidence for the existence of adult stem cells in two endodermally derived organs: pancreas and liver. We will review the characteristics of the putative stem cells in these tissues and the transcription factors controlling their differentiation towards functional cell types.
Collapse
Affiliation(s)
- Zoë D. Burke
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Shifaan Thowfeequ
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Macarena Peran
- †Departamento de Neurociencias y Ciencias de la Salud, Universidad de Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - David Tosh
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Quinlan JM, Colleypriest BJ, Farrant M, Tosh D. Epithelial metaplasia and the development of cancer. Biochim Biophys Acta Rev Cancer 2007; 1776:10-21. [PMID: 17618050 DOI: 10.1016/j.bbcan.2007.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 01/15/2023]
Abstract
Metaplasia means the conversion, in postnatal life, of one cell type to another. Understanding the steps leading to metaplasia is important for two reasons. Firstly, it tells us something about the normal developmental biology of the tissues that interconvert. Secondly, metaplasia predisposes to certain forms of neoplasia. So understanding the molecular and cellular mechanisms underlying metaplasia will provide insights into clinical diagnosis and potential therapies. One of the best-described examples of metaplasia is Barrett's metaplasia or the appearance of intestinal-like columnar tissue in the oesophagus. Barrett's metaplasia develops as a result of gastro-oesophageal reflux and is considered the precursor lesion for oesophageal adenocarcinoma. While we know quite a bit about the molecular events associated with the development of oesophageal adenocarcinoma, our understanding of the initial events leading to Barrett's metaplasia is lacking. In the present review we will focus on examples of metaplasia that lead to neoplasia and discuss some of the underlying molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Jonathan M Quinlan
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | | | | | | |
Collapse
|
43
|
Ek M, Söderdahl T, Küppers-Munther B, Edsbagge J, Andersson TB, Björquist P, Cotgreave I, Jernström B, Ingelman-Sundberg M, Johansson I. Expression of drug metabolizing enzymes in hepatocyte-like cells derived from human embryonic stem cells. Biochem Pharmacol 2007; 74:496-503. [PMID: 17568565 DOI: 10.1016/j.bcp.2007.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/19/2007] [Accepted: 05/03/2007] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESC) offer a potential unlimited source for functional human hepatocytes, since they can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing several hepatic markers. Such cells could be used for, e.g. studies of drug metabolism and hepatotoxicity, which however would require a significant expression of drug metabolising enzymes. Thus, we have investigated the expression of cytochrome P450s (CYPs), UDP-glucuronosyltransferases (UGTs), drug transporters, transcription factors and other liver specific genes in hepatocyte-like cells derived from hESC using a simple direct differentiation protocol. The mRNA and protein expression of several important CYPs were determined using low density arrays, real time PCR and Western blotting. Significant CYP expression on the mRNA level was detected in hepatocyte-like cells derived from one out of two different hESC lines tested, which was much higher than in undifferentiated hESC and generally higher than in HepG2 cells. CYP1A2, CYP3A4/7 and low levels of CYP1A1 and CYP2C8/9/19 protein were detected in both lines. The mRNAs for a variety of CYPs and liver specific factors were shown to be inducible in both cell lines, and this was reflected in induced levels of CYP1A2 and CYP3A4/7 protein. This first report on expression of all major CYPs in hepatocyte-like cells derived from hESC represents an important step towards functional hepatocytes, but efforts to further differentiate the cells using optimized protocols are needed before they exhibit similar levels of drug metabolizing enzymes as primary human hepatocytes and liver.
Collapse
Affiliation(s)
- Monica Ek
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Transformations from one tissue type to another make up a well established set of phenomena that can be explained by the principles of developmental biology. Although these phenomena might be rare in nature, we can now imagine the possibility of deliberately reprogramming cells from one tissue type to another by manipulating the expression of transcription factors. This approach could generate new therapies for many human diseases.
Collapse
|
45
|
Stanger BZ, Tanaka AJ, Melton DA. Organ size is limited by the number of embryonic progenitor cells in the pancreas but not the liver. Nature 2007; 445:886-91. [PMID: 17259975 DOI: 10.1038/nature05537] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 11/29/2006] [Indexed: 02/07/2023]
Abstract
The determinants of vertebrate organ size are poorly understood, but the process is thought to depend heavily on growth factors and other environmental cues. In the blood and central nervous system, for example, organ mass is determined primarily by growth-factor-regulated cell proliferation and apoptosis to achieve a final target size. Here, we report that the size of the mouse pancreas is constrained by an intrinsic programme established early in development, one that is essentially not subject to growth compensation. Specifically, final pancreas size is limited by the size of the progenitor cell pool that is set aside in the developing pancreatic bud. By contrast, the size of the liver is not constrained by reductions in the progenitor cell pool. These findings show that progenitor cell number, independently of regulation by growth factors, can be a key determinant of organ size.
Collapse
Affiliation(s)
- Ben Z Stanger
- Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, and Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|