1
|
Wang Q, Li D, Guo Y, Xu Q, Wang A, Xie Q, Wang J. Molecular structure of Fgfbp1 protein and its regulation of zebrafish cartilage development and homeostasis: Implications for Wnt signaling and ECM stability. Int J Biol Macromol 2025; 307:142340. [PMID: 40120897 DOI: 10.1016/j.ijbiomac.2025.142340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The role of Wnt signaling pathway in the regulation of chondrodevelopment has received extensive attention. The role and molecular mechanism of Fgfbp1 protein, which interacts with extracellular matrix, in the development of zebrafish cartilage are not fully understood. The aim of this study was to investigate the molecular structure of Fgfbp1 protein and its regulatory role in the development and homeostasis of zebrafish cartilage, especially its effects on the stability of Wnt signaling pathway and ECM. The amino acid sequence of Fgfbp1 protein was predicted by bioinformatics analysis and molecular cloning, and its three-dimensional structure model was constructed. Using zebrafish embryo as experimental model, the role of Fgfbp1 protein in the development of zebrafish cartilage was studied by gene knock-down and overexpression techniques. The expression pattern and localization of Fgfbp1 protein in zebrafish embryos were analyzed by immunofluorescence staining and confocal microscopy. In order to explore the effect of Fgfbp1 protein on Wnt signaling pathway, the expression of genes related to Wnt signaling pathway was also analyzed in this study. The changes of ECM components were detected by biochemical methods to evaluate the role of Fgfbp1 protein on ECM stability. The study found that the Fgfbp1 protein has a unique molecular structure, and its three-dimensional model revealed multiple potential binding sites for interacting with ECM components. In zebrafish embryos, Fgfbp1 protein is mainly expressed in the chondrogenic region, and its expression level is closely related to the differentiation and maturation of chondrocytes. Gene knock-down experiments have shown that deletion of the Fgfbp1 protein leads to chondrodysplasia, which is characterized by reduced number and abnormal morphology of chondrocytes. On the contrary, overexpression of Fgfbp1 protein promoted the proliferation and differentiation of chondrocytes. Further analysis showed that Fgfbp1 protein can regulate the expression of key genes in the Wnt signaling pathway, such as Wnt3a and β-catenin, thereby affecting the proliferation and differentiation of chondrocytes. The loss of Fgfbp1 protein leads to decreased expression levels of ECM components such as collagen and fibranexin, suggesting that Fgfbp1 protein plays an important role in the stability of ECM.
Collapse
Affiliation(s)
- Qiong Wang
- Departments of Clinical Laboratory, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Ding Li
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Yu Guo
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Qiang Xu
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Aoting Wang
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Qiwen Xie
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China
| | - Junfang Wang
- Departments of Orthopedics, Wuxi People's Hospital Afffliated to Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214000, PR China.
| |
Collapse
|
2
|
Acetaminophen Disrupts the Development of Pharyngeal Arch-Derived Cartilage and Muscle in Zebrafish. J Dev Biol 2022; 10:jdb10030030. [PMID: 35893125 PMCID: PMC9326545 DOI: 10.3390/jdb10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Acetaminophen is a common analgesic, but its potential effects on early embryonic development are not well understood. Previous studies using zebrafish (Danio rerio) have described the effects of acetaminophen on liver development and physiology, and a few have described gross physiological and morphological defects. Using a high but non-embryonic lethal dose of acetaminophen, we probed for defects in zebrafish craniofacial cartilage development. Strikingly, acetaminophen treatment caused severe craniofacial cartilage defects, primarily affecting both the presence and morphology of pharyngeal arch-derived cartilages of the viscerocranium. Delaying acetaminophen treatment restored developing cartilages in an order correlated with their corresponding pharyngeal arches, suggesting that acetaminophen may target pharyngeal arch development. Craniofacial cartilages are derived from cranial neural crest cells; however, many neural crest cells were still seen along their expected migration paths, and most remaining cartilage precursors expressed the neural crest markers sox9a and sox10, then eventually col2a1 (type II collagen). Therefore, the defects are not primarily due to an early breakdown of neural crest or cartilage differentiation. Instead, apoptosis is increased around the developing pharyngeal arches prior to chondrogenesis, further suggesting that acetaminophen may target pharyngeal arch development. Many craniofacial muscles, which develop in close proximity to the affected cartilages, were also absent in treated larvae. Taken together, these results suggest that high amounts of acetaminophen can disrupt multiple aspects of craniofacial development in zebrafish.
Collapse
|
3
|
Chen C, Ni X, Yin X, Chen H, Zhou Y, Sun H, Qi C, Bu N, Wang S, Yu J, Yang J, Ao W, Zhao B, Dong W. Developmental disorders caused by cefixime in the otic vesicles of zebrafish embryos or larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109295. [PMID: 35134541 DOI: 10.1016/j.cbpc.2022.109295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
To explore the developmental toxicity of cefixime (CE) in the developmental disorder and toxicity mechanism of CE on otic vesicles, zebrafish embryos were used as an animal model. The results showed that CE increased mortality in a dose-dependent manner and decreased the hatching rate of zebrafish larva at 96 hpf. Interestingly, CE significantly reduced the area of the saccule and utricle, as well as the area of otic vesicles in zebrafish larvae (p < 0.001). Fibroblast growth factor 8a (Fgf8a) inhibitors and bone morphogenetic protein (BMP) inhibitors caused similar morphological changes. CE decreased the lateral hair cells of zebrafish larvae in a dose-dependent manner. Furthermore, CE caused the downregulation of cartilage and bone-related genes and Na+/K+-ATPase-related genes of zebrafish larvae at 72 hpf and 120 hpf according to RT-qPCR. A comparison with the control group revealed that 100 μg/mL CE also caused a decrease in Na+/K+-ATPase activity (p < 0.01). In addition, antibody staining verified that CE inhibited the expression of Na+/K+-ATPase in the otic vesicles and the nephridium of zebrafish larvae. The data obtained in this study suggested that CE has significant ototoxicity during embryonic development of zebrafish, which is closely related to Na+/K+-ATPase and the regulation of the Fgf8a/BMP signaling pathways. The effects and toxicity of CE on ear development in other animal models need to be further explored.
Collapse
Affiliation(s)
- Chaobao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yini Zhou
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Huiying Sun
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Nini Bu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuaiyu Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jianhua Yu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wuliji Ao
- Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering Technology/College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
4
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
5
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
6
|
Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lan Y, Pan H, Li C, Banks KM, Sam J, Ding B, Elemento O, Goll MG, Evans T. TETs Regulate Proepicardial Cell Migration through Extracellular Matrix Organization during Zebrafish Cardiogenesis. Cell Rep 2020; 26:720-732.e4. [PMID: 30650362 PMCID: PMC6366638 DOI: 10.1016/j.celrep.2018.12.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/30/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes (Tet1/2/3) mediate 5-methylcytosine (5mC) hydroxylation, which can facilitate DNA demethylation and thereby impact gene expression. Studied mostly for how mutant isoforms impact cancer, the normal roles for Tet enzymes during organogenesis are largely unknown. By analyzing compound mutant zebrafish, we discovered a requirement for Tet2/3 activity in the embryonic heart for recruitment of epicardial progenitors, associated with development of the atrial-ventricular canal (AVC). Through a combination of methylation, hydroxymethylation, and transcript profiling, the genes encoding the activin A subunit Inhbaa (in endocardium) and Sox9b (in myocardium) were implicated as demethylation targets of Tet2/3 and critical for organization of AVC-localized extracellular matrix (ECM), facilitating migration of epicardial progenitors onto the developing heart tube. This study elucidates essential DNA demethylation modifications that govern gene expression changes during cardiac development with striking temporal and lineage specificities, highlighting complex interactions in multiple cell populations during development of the vertebrate heart. Lan et al. show that zebrafish larvae mutant for tet2 and tet3 fail to demethylate genes encoding Inhbaa (in endocardium) and Sox9b (in myocardium), leading to defects in ECM needed to form valves and to recruit epicardial progenitors onto the heart tube.
Collapse
Affiliation(s)
- Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Cheng Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jessica Sam
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bo Ding
- Bonacept, LLC, 7699 Palmilla Drive, Apt. 3312, San Diego, CA 92122, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary G Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
8
|
Sarmah S, Srivastava R, McClintick JN, Janga SC, Edenberg HJ, Marrs JA. Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects. Sci Rep 2020; 10:3951. [PMID: 32127575 PMCID: PMC7054311 DOI: 10.1038/s41598-020-59043-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Rajneesh Srivastava
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sarath C Janga
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Tangredi BP, Lawler DF. Osteoarthritis from evolutionary and mechanistic perspectives. Anat Rec (Hoboken) 2019; 303:2967-2976. [PMID: 31854144 DOI: 10.1002/ar.24339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Developmental osteogenesis and the pathologies associated with tissues that normally are mineralized are active areas of research. All of the basic cell types of skeletal tissue evolved in early aquatic vertebrates. Their characteristics, transcription factors, and signaling pathways have been conserved, even as they adapted to the challenge imposed by gravity in the transition to terrestrial existence. The response to excess mechanical stress (among other factors) can be expressed in the pathologic phenotype described as osteoarthritis (OA). OA is mediated by epigenetic modification of the same conserved developmental gene networks, rather than by gene mutations or new chemical signaling pathways. Thus, these responses have their evolutionary roots in morphogenesis. Epigenetic channeling and heterochrony, orchestrated primarily by microRNAs, maintain the sequence of these responses, while allowing variation in their timing that depends at least partly on the life history of the individual.
Collapse
Affiliation(s)
- Basil P Tangredi
- Vermont Institute of Natural Sciences, Quechee, Vermont
- Sustainable Agriculture Program, Green Mountain College, Poultney, Vermont
| | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois
- Illinois State Museum, Springfield, Illinois
- Pacific Marine Mammal Center, Laguna Beach, California
| |
Collapse
|
10
|
Debuf M, Benoit V, Cassart M, Gajewska K, Gauquier N, Meunier C, Rassart A, Maystadt I. Agenesis of olfactory bulbs: A forgotten diagnostic indicator of acampomelic campomelic dysplasia. Clin Case Rep 2019; 7:1352-1354. [PMID: 31360485 PMCID: PMC6637348 DOI: 10.1002/ccr3.2228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022] Open
Abstract
Campomelic dysplasia (CD) and its variant acampomelic campomelic dysplasia (ACD) are caused by SOX9 haploinsufficiency. This gene encodes a transcription factor crucial for embryogenesis and primarily expressed in the olfactory bulbs. The detection of agenesis of olfactory bulbs could help establish a prenatal diagnosis of CD or ACD, although prevalence of this sign remains unknown.
Collapse
Affiliation(s)
- Marie‐Julie Debuf
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
- Service de PédiatrieUniversité Catholique de LouvainBrusselsBelgium
| | - Valérie Benoit
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Marie Cassart
- Services de Radiologie et Médecine FoetaleHôpitaux Iris Sud et CHU St PierreBrusselsBelgium
| | - Kalina Gajewska
- Service de Gynécologie et d’ObstétriqueHôpital Civil Marie CurieCharleroiBelgium
| | | | - Colombine Meunier
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Anne Rassart
- Service de NéonatologieHôpital Civil Marie CurieCharleroiBelgium
| | - Isabelle Maystadt
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
- Département de Médecine, URPHYMUniversité de NamurNamurBelgium
| |
Collapse
|
11
|
Wopat S, Bagwell J, Sumigray KD, Dickson AL, Huitema LFA, Poss KD, Schulte-Merker S, Bagnat M. Spine Patterning Is Guided by Segmentation of the Notochord Sheath. Cell Rep 2019; 22:2026-2038. [PMID: 29466731 PMCID: PMC5860813 DOI: 10.1016/j.celrep.2018.01.084] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 01/05/2023] Open
Abstract
The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine.
Collapse
Affiliation(s)
- Susan Wopat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaelyn D Sumigray
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Leonie F A Huitema
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Stefan Schulte-Merker
- Hubrecht Institute - KNAW & UMC Utrecht, 3584 CT, Utrecht, the Netherlands; Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, 48149 Münster, Germany; CiM Cluster of Excellence (EXC1003-CiM), 48149 Münster, Germany
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
12
|
sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Sci Rep 2018; 8:13906. [PMID: 30224706 PMCID: PMC6141582 DOI: 10.1038/s41598-018-32125-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
The high mobility group transcription factor SOX9 is expressed in stem cells, progenitor cells, and differentiated cell-types in developing and mature organs. Exposure to a variety of toxicants including dioxin, di(2-ethylhexyl) phthalate, 6:2 chlorinated polyfluorinated ether sulfonate, and chlorpyrifos results in the downregulation of tetrapod Sox9 and/or zebrafish sox9b. Disruption of Sox9/sox9b function through environmental exposures or genetic mutations produce a wide range of phenotypes and adversely affect organ development and health. We generated a dominant-negative sox9b (dnsox9b) to inhibit sox9b target gene expression and used the Gal4/UAS system to drive dnsox9b specifically in cardiomyocytes. Cardiomyocyte-specific inhibition of sox9b function resulted in a decrease in ventricular cardiomyocytes, an increase in atrial cardiomyocytes, hypoplastic endothelial cushions, and impaired epicardial development, ultimately culminating in heart failure. Cardiomyocyte-specific dnsox9b expression significantly reduced end diastolic volume, which corresponded with a decrease in stroke volume, ejection fraction, and cardiac output. Further analysis of isolated cardiac tissue by RT-qPCR revealed cardiomyocyte-specific inhibition of sox9b function significantly decreased the expression of the critical cardiac development genes nkx2.5, nkx2.7, and myl7, as well as c-fos, an immediate early gene necessary for cardiomyocyte progenitor differentiation. Together our studies indicate sox9b transcriptional regulation is necessary for cardiomyocyte development and function.
Collapse
|
13
|
A role for SOX9 in post-transcriptional processes: insights from the amphibian oocyte. Sci Rep 2018; 8:7191. [PMID: 29740094 PMCID: PMC5940923 DOI: 10.1038/s41598-018-25356-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Sox9 is a member of the gene family of SOX transcription factors, which is highly conserved among vertebrates. It is involved in different developmental processes including gonadogenesis. In all amniote species examined thus far, Sox9 is expressed in the Sertoli cells of the male gonad, suggesting an evolutionarily conserved role in testis development. However, in the anamniotes, fishes and amphibians, it is also expressed in the oocyte but the significance of such an expression remains to be elucidated. Here, we have investigated the nuclear localization of the SOX9 protein in the oocyte of three amphibian species, the urodelan Pleurodeles waltl, and two anurans, Xenopus laevis and Xenopus tropicalis. We demonstrate that SOX9 is associated with ribonucleoprotein (RNP) transcripts of lampbrush chromosomes in an RNA-dependent manner. This association can be visualized by Super-resolution Structured Illumination Microscopy (SIM). Our results suggest that SOX9, known to bind DNA, also carries an additional function in the posttranscriptional processes. We also discuss the significance of the acquisition or loss of Sox9 expression in the oocyte during evolution at the transition between anamniotes and amniotes.
Collapse
|
14
|
Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 2017; 91:609-619. [PMID: 28385905 PMCID: PMC5438132 DOI: 10.1124/mol.117.108233] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Britton C Goodale
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Michelle W Wiley
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - David A Hendrix
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| |
Collapse
|
15
|
Burns FR, Lanham KA, Xiong KM, Gooding AJ, Peterson RE, Heideman W. Analysis of the zebrafish sox9b promoter: Identification of elements that recapitulate organ-specific expression of sox9b. Gene 2015; 578:281-9. [PMID: 26721460 DOI: 10.1016/j.gene.2015.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 11/28/2015] [Accepted: 12/17/2015] [Indexed: 01/09/2023]
Abstract
The SRY-related high-mobility box 9 (SOX9) gene is expressed in many different tissues. To better understand the DNA elements that control tissue-specific expression, we cloned and sequenced a 2.5 kb fragment lying 5' to the zebrafish sox9b gene transcriptional start site. Three regions of this clone contained stable secondary structures that hindered cloning, sequencing, and amplification. This segment and smaller fragmentswere inserted 5' of an EGFP reporter and transgenic fish were raised with the different reporters. Reporter expression was also observed in embryos directly injected with the constructs to transiently express the reporter. Heart expression required only a very short 5' sequence, as a 0.6 kb sox9b fragment produced reporter expression in heart in transgenic zebrafish, and transient experiments showed heart expression from a minimal sox9b promoter region containing a conserved TATA box and an EGR2 element (-74/+29 bp). Reporter expression in transgenic skeletal muscle was consistently lower than in other tissues. Jaw, brain, and notochord expression was strong with the full-length clone, but was dramatically reduced as the size of the fragment driving the reporter decreased from approximately 1.8 to 0.9 kb. The 2.5 kb region 5' of the sox9b contained 7 conserved non-coding elements (CNEs) that included putative hypoxia inducible factor 1α (HIF1α), CAAT box (CCAAT), early growth response protein 2 (EGR2), and core promoter elements. While a synthetic fragment containing all 7 CNEs produced some degree of reporter expression in muscle, jaw, heart and brain, the degree of reporter expression was considerably lower than that produced by the full length clone. These results can account for the tissue-specific expression of sox9b in the developing zebrafish.
Collapse
Affiliation(s)
- Felipe R Burns
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| | - Kevin A Lanham
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | - Kong M Xiong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 420 Henry Mall, Madison, WI 53705, USA; Immunoassay Research and Development, Beckman Coulter Inc., 1000 Lake Hazeltine Dr., Chaska, MN 55318, USA
| | - Alex J Gooding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| | - Warren Heideman
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
16
|
Burns FR, Peterson RE, Heideman W. Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 164:52-60. [PMID: 25914093 PMCID: PMC4470709 DOI: 10.1016/j.aquatox.2015.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 05/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) disrupts craniofacial development in zebrafish larvae. However, the cellular changes responsible for the decreased jaw size remain poorly understood. We show that smaller jaw size is due to a decrease in both the size and number of chondrocytes in the developing craniofacial cartilages. TCDD was found to decrease ossification of osteoblasts in the perichondrium of craniofacial cartilages. We also discovered that TCDD caused clefting of the parasphenoid, an effect with similarity to TCDD-induced cleft palate in mice. Thus, dermal and perichondrial bone development of the craniofacial skeleton are clearly disrupted by TCDD exposure in the zebrafish larvae. This dysmorphic response of the zebrafish craniofacial skeleton after exposure to TCDD is consistent with findings demonstrating disruption of axial bone development in medaka and repression of sox9b in zebrafish.
Collapse
Affiliation(s)
- Felipe R Burns
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, USA; School of Pharmacy, University of Wisconsin Madison, WI 53705, USA
| | - Warren Heideman
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, USA; School of Pharmacy, University of Wisconsin Madison, WI 53705, USA
| |
Collapse
|