1
|
Kang YM, Cho HK, An SJ, Kim HJ, Lee YJ, Kang HM. Updating the National Antigen Bank in Korea: Protective Efficacy of Synthetic Vaccine Candidates against H5Nx Highly Pathogenic Avian Influenza Viruses Belonging to Clades 2.3.2.1 and 2.3.4.4. Vaccines (Basel) 2022; 10:vaccines10111860. [PMID: 36366368 PMCID: PMC9697692 DOI: 10.3390/vaccines10111860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Since 2018, Korea has been building an avian influenza (AI) national antigen bank for emergency preparedness; this antigen bank is updated every 2 years. To update the vaccine strains in the antigen bank, we used reverse genetics technology to develop two vaccine candidates against avian influenza strains belonging to clades 2.3.2.1d and 2.3.4.4h, and then evaluated their immunogenicity and protective efficacy in SPF chickens challenged with H5 viruses. The two vaccine candidates, named rgCA2/2.3.2.1d and rgES3/2.3.4.4h, were highly immunogenic, with hemagglutination inhibition (HI) titers of 8.2−9.3 log2 against the vaccine strain, and 7.1−7.3 log2 against the lethal challenge viruses (in which the HA genes shared 97% and 95.4% homology with that of rgCA2/2.3.2.1d and rgES3/2.3.4.4h, respectively). A full dose of each vaccine candidate provided 100% protection against the challenge viruses, with a reduction in clinical symptoms and virus shedding. A 1/10 dose provided similar levels of protection, whereas a 1/100 dose resulted in mortality and virus shedding by 7 dpi. Moreover, immunity induced by the two vaccines was long lasting, with HI titers of >7 log2 against the vaccine strain remaining after 6 months. Thus, the two vaccine candidates show protective efficacy and can be used to update the AI national antigen bank.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun-Mi Kang
- Correspondence: ; Tel.: +82-549120972; Fax: +82-549120977
| |
Collapse
|
2
|
Yoon H, Lee I, Kang H, Kim KS, Lee E. Big data-based risk assessment of poultry farms during the 2020/2021 highly pathogenic avian influenza epidemic in Korea. PLoS One 2022; 17:e0269311. [PMID: 35671297 PMCID: PMC9173618 DOI: 10.1371/journal.pone.0269311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Outbreaks of H5-type highly pathogenic avian influenza (HPAI) in poultry have been reported in various parts of the world. To respond to these continuous threats, numerous surveillance programs have been applied to poultry raising facilities as well as wild birds. In Korea, a surveillance program was developed aimed at providing a preemptive response to possible outbreaks at poultry farms. The purpose of this study is to comprehensively present the risks of HPAI evaluated by this program in relation to actual outbreak farms during the epidemic of 2020/2021. A deep learning-based risk assessment program was trained based on the pattern of livestock vehicles visiting poultry farms and HPAI outbreaks to calculate the risk of HPAI for farms linked by the movement of livestock vehicles (such farms are termed “epidemiologically linked farms”). A total of 7,984 risk assessments were conducted, and the results were categorized into four groups. The proportion of the highest risk level was greater in duck farms (13.6%) than in chicken farms (8.8%). Among the duck farms, the proportion of the highest risk level was much greater in farms where breeder ducks were raised (accounting for 26.4% of the risk) than in farms where ducks were raised to obtain meat (12.8% of the risk). A higher risk level was also found in cases where the species of the outbreak farm and epidemiologically linked farms were the same (proportion of the highest risk level = 13.2%) compared to that when the species between the two farms were different (7.9%). The overall proportion of farms with HPAI outbreaks among epidemiologically linked farms (attack rate, AR) was 1.7% as HPAI was confirmed on 67 of the 3,883 epidemiologically linked farms. The AR was highest for breeder ducks (15.3%) among duck farms and laying hens (4.8%) among chicken farms. The AR of the pairs where livestock vehicles entered the inner farm area was 1.3 times (95% confidence interval: 1.4–2.9) higher than that of all pairs. With the risk information provided, customized preventive measures can be implemented for each epidemiologically linked farm. The use of this risk assessment program would be a good example of information-based surveillance and support decision-making for controlling animal diseases.
Collapse
Affiliation(s)
- Hachung Yoon
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
- * E-mail:
| | - Ilseob Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Hyeonjeong Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Kyung-Sook Kim
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Eunesub Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Mon HH, Hadrill D, Brioudes A, Mon CCS, Sims L, Win HH, Thein WZ, Mok WS, Kyin MM, Maw MT, Win YT. Longitudinal Analysis of Influenza A(H5) Sero-Surveillance in Myanmar Ducks, 2006-2019. Microorganisms 2021; 9:2114. [PMID: 34683435 PMCID: PMC8540498 DOI: 10.3390/microorganisms9102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Between 2006 and 2019, serological surveys in unvaccinated domestic ducks reared outdoors in Myanmar were performed, using a haemagglutination inhibition (HI) test, to confirm H5 avian influenza virus circulation and assess temporal and spatial distribution. Positive test results occurred every year that samples were collected. The annual proportion of positive farms ranged from 7.1% to 77.2%. The results revealed silent/sub-clinical influenza A (H5) virus circulation, even in years and States/Regions with no highly pathogenic avian influenza (HPAI) outbreaks reported. Further analysis of the 2018/19 results revealed considerable differences in seroconversion rates between four targeted States/Regions and between years, and showed seroconversion before and during the sampling period. By the end of the trial, a high proportion of farms were seronegative, leaving birds vulnerable to infection when sold. Positive results likely indicate infection with Gs/GD/96-lineage H5Nx HPAI viruses rather than other H5 subtype low-pathogenicity avian influenza viruses. The findings suggested persistent, but intermittent, circulation of Gs/GD/96-lineage H5Nx HPAI viruses in domestic ducks, despite the veterinary services' outbreak detection and control efforts. The role of wild birds in transmission remains unclear but there is potential for spill-over in both directions. The findings of this study assist the national authorities in the design of appropriate, holistic avian influenza control programs.
Collapse
Affiliation(s)
- Hla Hla Mon
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - David Hadrill
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Aurélie Brioudes
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Cho Cho Su Mon
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Leslie Sims
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Htay Htay Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Way Zin Thein
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Wing Sum Mok
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Maung Maung Kyin
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| |
Collapse
|