1
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
2
|
Etemad L, Roohbakhsh A, Abbaspour A, Alizadeh Ghamsari A, Amin F, Moshiri M. The effect of sodium benzoate, L-carnitine, and phenylacetate on valproate-induced hyperammonemia in Male Wistar rats. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:324-331. [PMID: 36741198 PMCID: PMC9890203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION L-carnitine (LC) is commonly used in the treatment of valproate-induced hyperammonemia (VIHA). LC prevents the production of ammonia with no significant effect on renal ammonia excretion. This study was conducted to evaluate the effect of sodium benzoate (SB) and phenyl acetate (PA) on reducing VIHA. MATERIALS AND METHODS Eight groups treated with Sodium Valproate (SV) at 300 mg/kg and 15 minutes later with normal saline, SB (144 mg/kg), PA (0.3 g/kg), LC (2.5 g/kg), SB (144 mg/kg) plus PA (0.3 g/kg), or SB (144 mg/kg) plus PA (0.3 g/kg) plus LC (2.5 g/kg), intraperitoneally. Other groups were exposed to normal saline, SB, LC or PA alone. Animal's motor function and serum ammonia, lactate, and sodium levels were assessed at 0.5, 1, and 1.5 hours after the SV injection. RESULTS The results showed that LC reduced SV-induced hyperammonemia just at one and half-hour after treatment (P<0.001). PA, alone or in combination with other antidotes, reduced serum ammonia at all evaluated times (P<0.001). LC improved the impaired motor function of animals only at 1.5 hours, while PA, alone or in combination decreased the motor function scores at different times. However, SB administration alone did not change SV-induced hyperammonemia or motor function impairment. There was no significant difference in the level of serum aminotransferases, blood urea nitrogen, and creatinine between groups. CONCLUSION These findings define that PA had a better therapeutic effect on valproate-induced hyperammonemia in comparison with SB. Co-administration of LC with PA ameliorated the elevated levels of ammonia and may relieve potential therapeutic application against acute SV intoxication.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical SciencesMashhad, Iran
| | - Abolfazl Abbaspour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical SciencesMashhad, Iran
| | - Anahita Alizadeh Ghamsari
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran
| | - Fatemeh Amin
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical SciencesRafsanjan, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical SciencesMashhad, Iran,Department of Clinical Toxicology, Imam Reza Hospital, Mashhad University of Medical SciencesMashhad, Iran
| |
Collapse
|
3
|
Gheena S, Ezhilarasan D, Shree Harini K, Rajeshkumar S. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2143-2152. [PMID: 35543257 DOI: 10.1002/tox.23557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Sodium valproate (SV) is a well-known anti-epileptic drug, also used to control convulsions, bipolar disorders and migraines. SV has been shown to induce liver toxicity in clinical subjects. Syringic acid (SA), a natural polyphenolic compound has potential antioxidant, anti-inflammatory and several beneficial effects. Therefore, in this study, we evaluated hepatoprotective effect of SA against SV-induced liver injury in rats. Wistar rats were treated with SV orally at a dose of 500 mg/kg, once daily, for 14 days. Another three groups of rats were administered with SV and concurrently treated with SA (40 and 80 mg/kg) and silymarin (SIL) (100 mg/kg) for 14 days. SV administration for 14 days caused significant (p < .001) elevation of liver transaminases and ALP in serum. Liver MDA level was significantly (p < .001) increased with a concomitant decrease (p < .001) in enzymic antioxidants activities in SV administered rats. SV administration also caused the upregulation of proinflammatory markers such as tumor necrosis factor α, c-Jun N-terminal kinase, nuclear factor kappa B, cyclooxygenase-2 and Interleukin 6 expressions in liver tissue. Histopathological studies also revealed the presence of inflammatory cell infiltration and hepatocellular necrosis upon SV administration. At both doses, concurrent administration of SA and SIL significantly (p < .001) inhibited the liver transaminase activities in serum, oxidative stress, and proinflammatory markers expression in liver tissue. Our current results suggest that SA can be a promising herbal drug that can inhibit SV-induced hepatotoxicity when administered together due its potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Sukumaran Gheena
- Department of Oral Pathology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthik Shree Harini
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Shanmugam Rajeshkumar
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep 2022; 49:6063-6074. [DOI: 10.1007/s11033-022-07395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
|
5
|
Ag Nanoislands Modified Carbon Fiber Nanostructure: A Versatile and Ultrasensitive Surface-Enhanced Raman Scattering Platform for Antiepileptic Drug Detection. COATINGS 2021. [DOI: 10.3390/coatings12010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A high-efficiency surface-enhanced Raman scattering (SERS) detection method with ultra-high sensitivity has been widely applied in drug component detection to optimize the product quality verification standards. Herein, a controllable strategy of sputtering Ag nanoislands on carbon fiber (C-fiber) via magnetron sputtering technology was proposed to fabricate a versatile Ag-C-fiber SERS active substrate. A wide range of multi-level electromagnetic enhancement “hot spots” distributed on Ag-C-fiber nanostructures can efficiently amplify Raman signals and the experimental enhancement factor (EEF) value was 3.871 × 106. Furthermore, substantial “hot spots” of large-scale distribution guaranteed the superior reproducibility of Raman signal with relative standard deviation (RSD) values less than 12.97%. Limit of detection (LOD) results indicated that when crystal violet (CV) is employed as probe molecule, the LOD was located at 1 × 10−13 M. By virtue of ultra-sensitivity and good flexibility of the Ag-C-fiber nanotemplate, Raman signals of two kinds of antiepileptic drugs called levetiracetam and sodium valproate were successfully obtained using an SERS-based spectral method. The Ag-C-fiber SERS detection platform demonstrated a good linear response (R2 = 0.97486) in sensing sodium valproate concentrations in the range of 1 × 103 ng/μL−1–1 ng/μL. We believe that this reliable strategy has potential application for trace detection and rapid screening of antiepileptic drugs in the clinic.
Collapse
|
6
|
Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Colak C, Tanriverdi LH, Parlakpinar H. Protective effects of naringin on valproic acid-induced hepatotoxicity in rats. Tissue Cell 2021; 72:101526. [PMID: 33756270 DOI: 10.1016/j.tice.2021.101526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA) is mainly prescribed to treat epilepsy. VPA has been reported to be associated with many adverse effects, including hepatotoxicity. Naringin (NRG) is a natural, therapeutically active flavanone glycoside with anti-inflammatory, anti-apoptotic, and antioxidant. The current study was therefore designed to investigate the protective effect of NRG against the VPA-induced experimental hepatotoxicity model. For this purpose, 24 Wistar albino rats were randomly divided into three groups as control (Vehicle), VPA (500 mg/kg), and NRG + VPA (100 mg/kg NRG + 500 mg/kg VPA) groups. The agents were administered via oral gavage for 14 days. Blood and liver tissue samples were taken on the end of the experiment. Biochemical analyzes were performed on the blood and liver samples. Also, malondialdehyde (MDA), superoxide dismutase (SOD) enzyme, glutathione (GSH) content, catalase (CAT) enzyme levels were examined in the liver tissue samples. Histopathological changes (hydropic degeneration and congestion) in the VPA group were increased significantly when compared to the control group (p < 0.05). We also found a decrease in enzymes of serum liver function in the VPA group. However, NRG has been shown not to prevent histopathological changes in the VPA group. According to our results with this experiment protocol, NRG could not exert sufficient protection against VPA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Omer Faruk Koroglu
- Medical Student, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science and Arts, İnonu University, Malatya, 44280, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Lokman Hekim Tanriverdi
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey.
| |
Collapse
|