1
|
Gamal MAN, El-Nagar EMS, Khattab MS, Salem HM. Molecular discernment and histopathological features of oncogenic Marek's disease virus among different farmed avian species in Egypt. Sci Rep 2025; 15:15409. [PMID: 40316597 PMCID: PMC12048604 DOI: 10.1038/s41598-025-98196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Marek's disease virus (MDV) is a highly contagious tumor virus that causes detrimental outbreaks in poultry. Since its initial description, the virus's virulence and acuteness have progressively increased. During this study, we investigated suspected tumorigenic cases of MDV-1 infection among different avian species (chicken, ducks, and turkey) in various Egyptian governorates, including Al-Sharqia, Gharbia, Dakahlia, Port Said, Damietta, and Fayoum, between 2020 and 2023. A molecular study targeting the virulent oncogenic Meq gene revealed that the tumorigenic masses in chicken and duck tissues were identified as virulent MDV-1, but turkeys with cauliflower-like ovarian tumors showed negative results. The isolated MDV-1 strain of chicken origin was given the designation YLE2021 and the sequence was submitted to GenBank with accession number PQ59985. The amino acid sequence of the YLE2021 chicken Meq showed a 296 amino acid length (short Meq), which is characteristic of very virulent Meq and contains seven proline motifs, three of them are interrupted (187 PLQPP 191, 195 PAPP198, 224 PPQPP 228). Experimental infection of one-day-old specific-pathogen-free (SPF) chickens with a strain recovered from a chicken tumor resulted in 40% of infected birds showing the classical neural form of MDV infection. No parenchymal tumors were observed, and the virus could be molecularly detected in the peripheral blood mononuclear cells (PMNCs) of infected and neighboring uninfected SPF birds. In conclusion, this is the first report to identify the presence of MDV-1 in Egyptian ducks. Further investigations are recommended to detect the main cause of the turkeys' tumor. Continuous molecular monitoring of circulating field viruses is crucial to investigate the mechanisms behind the increase in virus evolution, which could lead to increased virus virulence and allow the virus to evade vaccine protection.
Collapse
Affiliation(s)
- Maha A N Gamal
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center (ARC), Cairo, Egypt
| | - Eman M S El-Nagar
- Genetic Engineering Research Department, Veterinary Serum and Vaccine Research Institute (VSVRI), Agricultural Research Centre (ARC), 11381, Cairo, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, 11892, Cairo, Egypt.
| |
Collapse
|
2
|
Zhu ZJ, Teng M, Liu Y, Chen FJ, Yao Y, Li EZ, Luo J. Immune escape of avian oncogenic Marek's disease herpesvirus and antagonistic host immune responses. NPJ Vaccines 2024; 9:109. [PMID: 38879650 PMCID: PMC11180173 DOI: 10.1038/s41541-024-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Marek's disease virus (MDV) is a highly pathogenic and oncogenic alpha herpesvirus that causes Marek's disease (MD), which is one of the most important immunosuppressive and rapid-onset neoplastic diseases in poultry. The onset of MD lymphomas and other clinical diseases can be efficiently prevented by vaccination; these vaccines are heralded as the first demonstration of a successful vaccination strategy against a cancer. However, the persistent evolution of epidemic MDV strains towards greater virulence has recently resulted in frequent outbreaks of MD in vaccinated chicken flocks worldwide. Herein, we provide an overall review focusing on the discovery and identification of the strategies by which MDV evades host immunity and attacks the immune system. We have also highlighted the decrease in the immune efficacy of current MD vaccines. The prospects, strategies and new techniques for the development of efficient MD vaccines, together with the possibilities of antiviral therapy in MD, are also discussed.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China
| | - Yu Liu
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Fu-Jia Chen
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - En-Zhong Li
- College of Biological and Food Engineering & Affiliated Central Hospital, Huanghuai University, Zhumadian, 463000, People's Republic of China.
| | - Jun Luo
- Institute for Animal Health & UK-China Center of Excellence for Research on Avian Disease, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450002, People's Republic of China.
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
- Longhu Laboratory, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
3
|
Emad A, El-Kenawy AA, El-Tholoth M. Molecular characterization of Marek's Disease virus reveals reticuloendotheliosis virus-long terminal repeat integration in the genome of the field isolates in Egypt. Poult Sci 2024; 103:103722. [PMID: 38626691 PMCID: PMC11036097 DOI: 10.1016/j.psj.2024.103722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/18/2024] Open
Abstract
The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.
Collapse
Affiliation(s)
- Aya Emad
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. El-Kenawy
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Tholoth
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Veterinary Science Program, Faculty of Health Sciences, Al Ain Men's Campus, Higher Colleges of Technology, 17155, UAE
| |
Collapse
|
4
|
Cheng MC, Lai GH, Tsai YL, Lien YY. Circulating hypervirulent Marek's disease viruses in vaccinated chicken flocks in Taiwan by genetic analysis of meq oncogene. PLoS One 2024; 19:e0303371. [PMID: 38728352 PMCID: PMC11086920 DOI: 10.1371/journal.pone.0303371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.
Collapse
Affiliation(s)
- Ming-Chu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Guan-Hua Lai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yi-Yang Lien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Animal Disease Diagnostic Center, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center of Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
5
|
Cherif A, Basharat Z, Yaseen M, Bhat MA, Uddin I, Ziedan NI, Mabood F, Sadfi-Zouaoui N, Messaoudi A. Identification of Disalicyloyl Curcumin as a Potential DNA Polymerase Inhibitor for Marek's Disease Herpesvirus: A Computational Study Using Virtual Screening and Molecular Dynamics Simulations. Molecules 2023; 28:6576. [PMID: 37764352 PMCID: PMC10537106 DOI: 10.3390/molecules28186576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of -12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Aziza Cherif
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | | | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Imad Uddin
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Noha I. Ziedan
- Department of Physical Mathematical and Engineering Science, University of Chester, Chester CH2 4NU, UK;
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Swat 19130, Pakistan; (I.U.); (F.M.)
| | - Najla Sadfi-Zouaoui
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
| | - Abdelmonaem Messaoudi
- Laboratoire de Mycologie, Pathologies et Biomarqueurs (LR16ES05), Département de Biologie, Université de Tunis-El Manar, Tunis 2092, Tunisia; (A.C.); (N.S.-Z.)
- Higher Institute of Biotechnology of Beja, Jendouba University, Habib Bourguiba Street, Beja 9000, Tunisia
| |
Collapse
|