1
|
Pham HM, Do TT. Detection and assessment of risk factors associated with Newcastle disease virus infection in birds in backyard poultry in Laichau province of Vietnam. Avian Pathol 2023; 52:144-152. [PMID: 36533298 DOI: 10.1080/03079457.2022.2160697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Newcastle disease (ND) is a highly pathogenic and contagious viral infectious disease of poultry that causes a very serious problem for poultry production and economic loss worldwide. ND has been an epizootic disease in Vietnam. Information about the risk factors that are associated with virus transmission in backyard chickens in Vietnam is limited. To provide more epidemiological information about ND in Vietnam, this study was performed to estimate NDV prevalence and identify the risk factors for ND virus (NDV) infection in birds at the backyard flock level. Choanal swabs were taken from 400 randomly selected birds from 100 apparently healthy flocks from May to July 2020. Based on RT-PCR analysis, 43 of 400 swab samples (10.75%; 95% CI 8-14.17) and 21 of 100 flocks (21%; 95% CI 14.17-29.98) were positive for the fusion (F) gene of NDV. The management practice risks were: backyard flocks contacting wild birds (OR = 3.89; P = 0.030), mixed flocks with different types and species of birds (OR = 5.46; P = 0.004), and infrequency of cleaning and disinfecting poultry houses (OR (odds ratio) = 4.43; P = 0.034). The second and third risks (above) showed a positive interaction on the risk of NDV infection in birds (OR = 39.38; P = 0.001), and the first risk showed a negative interaction. Further studies on NDV surveillance in domestic waterfowl, longitudinal studies, a well-optimized RT-qPCR assay, and genetic characterization are needed. The development of handbooks, flyers, or lessons for educating poultry keepers are also needed.RESEARCH HIGHLIGHT RT-PCR was used to detect the F gene of NDV in choanal swabs.Risk factors associated with NDV-positive samples were determined.The evidence for NDV circulation in backyard healthy birds was observed.Contact with wild birds, mixed flocks, and poor hygiene were major risk factors.
Collapse
Affiliation(s)
- Hang Minh Pham
- Epidemiology and Pathology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Trang Thu Do
- Epidemiology and Pathology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| |
Collapse
|
2
|
Hu Z, He X, Deng J, Hu J, Liu X. Current situation and future direction of Newcastle disease vaccines. Vet Res 2022; 53:99. [PMID: 36435802 PMCID: PMC9701384 DOI: 10.1186/s13567-022-01118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022] Open
Abstract
Newcastle disease (ND) is one of the most economically devastating infectious diseases affecting the poultry industry. Virulent Newcastle disease virus (NDV) can cause high mortality and severe tissue lesions in the respiratory, gastrointestinal, neurological, reproductive and immune systems of poultry. Tremendous progress has been made in preventing morbidity and mortality caused by ND based on strict biosecurity and wide vaccine application. In recent decades, the continual evolution of NDV has resulted in a total of twenty genotypes, and genetic variation may be associated with disease outbreaks in vaccinated chickens. In some countries, the administration of genotype-matched novel vaccines in poultry successfully suppresses the circulation of virulent NDV strains in the field. However, virulent NDV is still endemic in many regions of the world, especially in low- and middle-income countries, impacting the livelihood of millions of people dependent on poultry for food. In ND-endemic countries, although vaccination is implemented for disease control, the lack of genotype-matched vaccines that can reduce virus infection and transmission as well as the inadequate administration of vaccines in the field undermines the effectiveness of vaccination. Dissection of the profiles of existing ND vaccines is fundamental for establishing proper vaccination regimes and developing next-generation vaccines. Therefore, in this article, we provide a broad review of commercial and experimental ND vaccines and promising new platforms for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaozheng He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Deng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Angeliya L, Kristianingrum YP, Asmara W, Wibowo MH. Genetic characterization and distribution of the virus in chicken embryo tissues infected with Newcastle disease virus isolated from commercial and native chickens in Indonesia. Vet World 2022; 15:1467-1480. [PMID: 35993083 PMCID: PMC9375212 DOI: 10.14202/vetworld.2022.1467-1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Newcastle disease (ND) is a viral infectious disease that affects commercial and native chickens, resulting in economic losses to the poultry industry. This study aimed to examine the viral strains circulating in commercial and native chickens by genetic characterization and observe the distribution of Newcastle disease virus (NDV) in chicken embryonic tissue. Materials and Methods: ND was detected using a quantitative reverse transcription-polymerase chain reaction. Genetic characterization of the fusion (F) and hemagglutinin-neuraminidase (HN) genes from the eight NDVs was performed using specific primers. The sequence was compared with that of other NDVs from GenBank and analyzed using the MEGA-X software. The distribution of NDV in chicken embryos was analyzed based on lesions and the immunopositivity in immunohistochemistry staining. Results: Based on F gene characterization, velogenic NDV strains circulating in commercial and native chickens that showed varying clinical symptoms belonged to genotype VII.2. Lentogenic strains found in chickens without clinical symptoms were grouped into genotype II (unvaccinated native chickens) and genotype I (vaccinated commercial chickens). Amino acid variations in the HN gene, namely, the neutralization epitope and antigenic sites at positions 263 and 494, respectively, occurred in lentogenic strains. The NDV reaches the digestive and respiratory organs, but in lentogenic NDV does not cause significant damage, and hence embryo death does not occur. Conclusion: This study showed that velogenic and lentogenic NDV strains circulated in both commercial and native chickens with varying genotypes. The virus was distributed in almost all organs, especially digestive and respiratory. Organ damage in lentogenic infection is not as severe as in velogenic NDV. Further research is needed to observe the distribution of NDV with varying pathogenicity in chickens.
Collapse
Affiliation(s)
- Liza Angeliya
- Veterinary Science Doctoral Study Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia; Disease Investigation Center Lampung, Jalan Untung Suropati Bandar Lampung, Lampung, 35142, Indonesia
| | | | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Michael Haryadi Wibowo
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|