1
|
Havryliuk O, Rathee G, Blair J, Hovorukha V, Tashyrev O, Morató J, Pérez LM, Tzanov T. Unveiling the Potential of CuO and Cu 2O Nanoparticles against Novel Copper-Resistant Pseudomonas Strains: An In-Depth Comparison. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1644. [PMID: 39452980 PMCID: PMC11510091 DOI: 10.3390/nano14201644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Four novel Pseudomonas strains with record resistance to copper (Cu2+) previously isolated from ecologically diverse samples (P. lactis UKR1, P. panacis UKR2, P. veronii UKR3, and P. veronii UKR4) were tested against sonochemically synthesised copper-oxide (I) (Cu2O) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and Cu2O NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, Cu2O and CuO NPs effectively decreased the biofilm-forming ability of the Cu2+-resistant UKR strains as well as degraded pre-established biofilm, matching NPs' antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type Pseudomonas analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria.
Collapse
Affiliation(s)
- Olesia Havryliuk
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
| | - Garima Rathee
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Jeniffer Blair
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Vira Hovorukha
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland
| | - Oleksandr Tashyrev
- Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine or (O.H.); or (V.H.); or (O.T.)
- Institute of Environmental Engineering and Biotechnology, University of Opole, 45-040 Opole, Poland
| | - Jordi Morató
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
| | - Leonardo M. Pérez
- Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (J.M.); (L.M.P.)
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain; (G.R.); (J.B.)
| |
Collapse
|
2
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Lieshchova MA, Brygadyrenko VV. Effect of Bidens tripartita leaf supplementation on the organism of rats fed a hypercaloric diet high in fat and fructose. REGULATORY MECHANISMS IN BIOSYSTEMS 2024; 15:648-655. [DOI: 10.15421/022493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Herbs play an important role in folk medicine, and scientific research has confirmed the properties of their use as an alternative treatment, including the treatment and mild correction of metabolic disorders during disease. Trifid bur-marigold (Bidens tripartita) is a pharmacopoeial herbal raw material that is widely used in clinical practice as an external remedy for skin lesions and as an internal remedy for digestive and respiratory disorders. In this work, the general effect of dried leaves of B. tripartita on physiological activity and metabolic processes in model animals on a high-calorie diet was determined. For the experiment, three groups of 18 male white laboratory rats were formed and fed a hypercaloric diet (increased fat content and 20% fructose solution instead of water) for 27 days, in addition to 0.4% and 4.0% dried leaves of B. tripartita. The consumption of 0.4% and 4.0% of the medicinal plant resulted in a significant delay in the body weight gain and the average daily weight gain of the rats compared to the control group. Dried leaves of B. tripartita in the diet of rats decreased the relative weight of the thymus and increased the relative weight of the brain, and at a dose of 4.0%, increased the relative weight of the lungs and individual large intestines (cecum and colon). Dietary supplementation with B. tripartita caused an increase in globulin concentration and changes in protein coefficient. Blood parameters such as: urea, urea nitrogen, inorganic phosphorus, glucose and bilirubin levels changed depending on the dose. In the general blood test, consumption of dried leaves of B. tripartita caused a decrease in hematocrit, hemoglobin concentration and platelet count, but increased the number of eosinophils. Bidens tripartita at both concentrations significantly increased ALT activity with a corresponding change in the blood De Ritis ratio. The addition of 20 g of B. tripartita leaves to the diet increased alkaline phosphatase activity and decreased alpha-amylase activity, while 200 g increased blood gamma-glutamyltransferase activity. At the end of the experiment, the rats' orientation activity, determined in the open field, changed according to the herb dose consumed: 0.4% leaves caused an increase and 4.0% a decrease. Physical activity was reduced and emotional state increased, regardless of the dose of dried B. tripartita leaves, compared to the control group of animals. The results obtained show that the addition of B. tripartita dried leaves as a dietary supplement to a high-calorie diet is safe, does not cause pathological changes or side effects, and has a significant effect on metabolic processes. This provides theoretical support for the use of B. tripartita dried leaves in the manufacture of nutraceutical and pharmacological products for the correction of metabolic disorders in humans and animals. The doses and duration of their application require further studies.
Collapse
|
4
|
Bakiyev S, Smekenov I, Zharkova I, Kobegenova S, Sergaliyev N, Absatirov G, Bissenbaev A. Characterization of atypical pathogenic Aeromonas salmonicida isolated from a diseased Siberian sturgeon ( Acipenser baerii). Heliyon 2023; 9:e17775. [PMID: 37483743 PMCID: PMC10359828 DOI: 10.1016/j.heliyon.2023.e17775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Acipenser baerii (Siberian sturgeon) is native to Kazakhstan and is currently endangered and is listed within the first class of protected animals. Sturgeon aquaculture is becoming an important tool for the recovery of this endangered species. Nonetheless, diseases involving typical symptoms of skin ulceration and systemic bacterial hemorrhagic septicemia have occurred in cultured A. baerii on a fish farm located in Western Kazakhstan. In this study, an infectious strain of bacteria isolated from an ulcer of diseased A. baerii was identified as Aeromonas salmonicida (strain AB001). This identification involved analyses of 16S rRNA, gyrB, rpoD, and flaA genes' sequences. Even though strain AB001 belongs to A. salmonicida, it exhibited noticeable mobility and growth at temperatures of ≥37 °C. Profiling of virulence genes uncovered the presence of seven such genes related to pathogenicity. Antibiotic sensitivity testing showed that the strain is sensitive to aminoglycosides, amphenicols, nitrofurans, quinolones, and tetracyclines. Half-lethal doses (LD50) of strain AB001 for Oreochromis mossambicus and A. baerii were determined: respectively 1.7 × 108 and 7.2 × 107 colony-forming units per mL. The experimentally induced infection revealed that strain AB001 causes considerable histological lesions in O. mossambicus, including tissue degeneration, necrosis, and hemorrhages of varied severity.
Collapse
Affiliation(s)
- Serik Bakiyev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Irina Zharkova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saidina Kobegenova
- Department of Biodiversity and Bioresources, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nurlan Sergaliyev
- Makhambet Utemisov West Kazakhstan University, Uralsk 090000, Kazakhstan
| | - Gaisa Absatirov
- West Kazakhstan Innovation and Technological University, Uralsk 090000, Kazakhstan
| | - Amangeldy Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Scientific Research Institute of Biology and Biotechnology Problems, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
5
|
Lykov A, Rachkovskaya L, Rachkovsky E, Poveshchenko O. Biocompatibility of composition of aluminum-silica carrier and extract of Matricaria chamomilla and Bidens tripartita with monocytic lines. 2022 URAL-SIBERIAN CONFERENCE ON COMPUTATIONAL TECHNOLOGIES IN COGNITIVE SCIENCE, GENOMICS AND BIOMEDICINE (CSGB) 2022:370-372. [DOI: 10.1109/csgb56354.2022.9865503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alexander Lykov
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS, Novosibirsk Tuberculosis Reseacrh Institute,Novosibirsk,Russia
| | - Lubov Rachkovskaya
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| | - Edmund Rachkovsky
- Research Institute of Clinical ans Experimental Lymphology- Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| | - Olga Poveshchenko
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics, SB RAS,Novosibirsk,Russia
| |
Collapse
|