1
|
Gong JZ, Fan YM, Wu YP, Pan M, Hou ZF, Huang SY. Establishment and application of a sandwich ELISA method for measuring Toxoplasma gondii circulating fructose-1,6-bisphosphate aldolase (ALD) protein in cats. Vet Parasitol 2025; 334:110395. [PMID: 39813886 DOI: 10.1016/j.vetpar.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Toxoplasmosis is an important public health concern. Cats play a crucial role in increasing the risk of toxoplasmosis transmission to humans. Early diagnosis in cats is essential for the prevention and control of toxoplasmosis. In this study, we found that T. gondii aldolase (ALD) could be an effective diagnostic antigen, and then the recombinant ALD protein was expressed using the pET SUMO protein expression system, the mouse monoclonal antibody (MoAb) and rabbit polyclonal antibody (PoAb) of ALD were successfully produced, respectively. Furthermore, a reliable sandwich enzyme-linked immunosorbent assay (sELISA) was developed to detect circulating ALD in the sera of experimentally and naturally infected cats. rALD sELISA could detect T. gondii infection from 7DPI (post-infection day) to 14DPI with 100 % sensitivity and specificity, but could not detect T. gondii infection after 21DPI, indicating that it is a good early diagnosis tool. The detection limit was 7.8 ng/ml, the coefficients of variation (CV) of repeated tests within batches and between batches were confirmed to be less than 10 %. The results of 70 cat clinical serum samples detected by rALD sELISA were in almost perfect agreement beyond chance with those of a commercial ELISA kit (Cohen's kappa coefficient = 0.883). This sandwich ELISA method has high accuracy and can be used for early diagnosis of toxoplasmosis in cats.
Collapse
Affiliation(s)
- Jing-Zhi Gong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yi-Min Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yun-Ping Wu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Zhao-Feng Hou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Chongqing Academy of Animal Sciences, Chongqing, PR China.
| |
Collapse
|
2
|
Sabukunze S, Gu H, Zhao L, Jia H, Guo H. Comparison of the performance of SAG2, GRA6, and GRA7 for serological diagnosis of Toxoplasma gondii infection in cats. Front Vet Sci 2024; 11:1423581. [PMID: 38898997 PMCID: PMC11186378 DOI: 10.3389/fvets.2024.1423581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasmosis is an important zoonotic disease caused by Toxoplasma gondii that can infect almost all warm-blooded animals worldwide, including humans. The high prevalence of T. gondii infection and its ability to cause serious harm to humans and animals, especially immunodeficient individuals, make it a key public health issue. Accurate diagnostic tools with high sensitivity are needed for controlling T. gondii infection. In the current study, we compared the performance of recombinant SAG2, GRA6, and GRA7 in ELISA for the serological diagnosis of T. gondii infection in cats. We further investigated the antigenicity of recombinant dense granule protein 3 (rGRA3), rGRA5, rGRA8, and rSRS29A expressed in a plant-based, cell-free expression system for detecting antibodies in T. gondii-infected cats. In summary, our data suggest that GRA7 is more sensitive than the other two antigens for the serodiagnosis of T. gondii infection in cats, and GRA3 expressed in the cell-free system is also a priming antigen in serological tests for detecting T. gondii infection in cats.
Collapse
Affiliation(s)
- Serges Sabukunze
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Haorong Gu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Honglin Jia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Gao Y, Shen Y, Fan J, Ding H, Zheng B, Yu H, Huang S, Kong Q, Lv H, Zhuo X, Lu S. Establishment and application of an iELISA detection method for measuring apical membrane antigen 1 (AMA1) antibodies of Toxoplasma gondii in cats. BMC Vet Res 2023; 19:229. [PMID: 37924072 PMCID: PMC10623812 DOI: 10.1186/s12917-023-03775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.
Collapse
Affiliation(s)
- Yafan Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational & Technical College, Jiaxing, 314036, China
| | - Siyang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hangjun Lv
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
MINGFU N, QIANG G, YANG L, YING H, CHENGSHUI L, CUILI Q. The antimicrobial peptide MetchnikowinII enhances Ptfa antigen immune responses against avian Pasteurella multocida in chickens. J Vet Med Sci 2023; 85:964-971. [PMID: 37407447 PMCID: PMC10539814 DOI: 10.1292/jvms.22-0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
Immunostimulants and vaccines are the main means for controlling infectious diseases and searching highly effective and low toxic immunestimulants has always been the focus of researchers. The MetchnikowinII (MetII) had been expressed by us and exhibited both antibacterial and antifungal activities, in this study, we evaluated its potential for an adjuvant effect. In chickens, antigen-specific immunoglobulin Gs (IgGs) were increased after MetII adjuvanted vaccination using the Ptfa protein. Compared to group Ptfa + iFA, which was only adjuvanted with incomplete Freund's adjuvant (iFA), the antibody titers of the group Ptfa + iFA + Met20 μg·mL-1 (PFM20) and Ptfa + iFA + Propolis (PFP) significantly increased (P<0.05). Likewise, Interleukin-2 (IL-2) and Interferon-γ (IFN-γ) cytokines in group Ptfa + iFA + Met20 μg·mL-1 (PFM20) and Ptfa + iFA + Propolis (PFP) were significantly higher than those of the other three experimental groups (P<0.05). The stimulation index (SI) value in chickens of group PFM20 was significantly higher than that of the other four experimental groups (P<0.05). Chickens that received MetII adjuvanted vaccinations benefitted from higher protection rate (88%) when challenged with Pasteurella multocida (P. multocida), which was significantly higher than those of group PF and PFP (P<0.05). These results suggested that the antimicrobial peptide MetII may play an adjuvant role in the immune response in chickens but need a proper usage, because the higher usage of 40 μg·mL-1 and 60 μg·mL-1 resulted poor effect. Whether MetII could be a potential adjuvant or a biomolecule as part of a complex adjuvant for vaccines needs more experimental evidence, the study still provides an examples for understanding vaccine adjuvants.
Collapse
Affiliation(s)
- Niu MINGFU
- Henan University of Science and Technology, Luoyang, China
| | - Gong QIANG
- Henan University of Science and Technology, Luoyang, China
| | - Li YANG
- Henan University of Science and Technology, Luoyang, China
| | - Hou YING
- Henan University of Science and Technology, Luoyang, China
| | - Liao CHENGSHUI
- Henan University of Science and Technology, Luoyang, China
| | - Qin CUILI
- Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
5
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|