1
|
Observance of Sterilization Protocol Guideline Procedures of Critical Instruments for Preventing Iatrogenic Transmission of Creutzfeldt-Jakob Disease in Dental Practice in France, 2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050853. [PMID: 29693615 PMCID: PMC5981892 DOI: 10.3390/ijerph15050853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/30/2022]
Abstract
Effective sterilization of reusable instruments contaminated by Creutzfeldt–Jakob disease in dental care is a crucial issue for public health. The present cross-sectional study investigated how the recommended procedures for sterilization were implemented by French dental practices in real-world settings. A sample of dental practices was selected in the French Rhône-Alpes region. Data were collected by a self-questionnaire in 2016. Sterilization procedures (n = 33) were classified into 4 groups: (1) Pre-sterilization cleaning of reusable instruments; (2) Biological verification of sterilization cycles—Monitoring steam sterilization procedures; (3) Autoclave performance and practitioner knowledge of autoclave use; (4) Monitoring and documentation of sterilization procedures—Tracking and tracing the instrumentation. Answers were provided per procedure, along with the global implementation of procedures within a group (over 80% correctly performed). Then it was verified how adherence to procedure groups varied with the size of the dental practice and the proportion of dental assistants within the team. Among the 179 questionnaires available for the analyses, adherence to the recommended procedures of sterilization noticeably varied between practices, from 20.7% to 82.6%. The median percentages of procedures correctly implemented per practice were 58.1%, 50.9%, 69.2% and 58.2%, in Groups 1, 2, 3 and 4, respectively (corresponding percentages for performing over 80% of the procedures in the group: 23.4%, 6.6%, 46.6% and 38.6%). Dental practices ≥ 3 dental units performed significantly better (>80%) procedures of Groups 2 and 4 (p = 0.01 and p = 0.002, respectively), while no other significant associations emerged. As a rule, practices complied poorly with the recommended procedures, despite partially improved results in bigger practices. Specific training regarding sterilization procedures and a better understanding of the reasons leading to their non-compliance are needed.
Collapse
|
2
|
Bencharit S, Allen RK, Whitley D. Utilization of Demineralized Bone Matrix to Restore Missing Buccal Bone During Single Implant Placement: Clinical Report. J ORAL IMPLANTOL 2016; 42:490-497. [DOI: 10.1563/aaid-joi-d-16-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sompop Bencharit
- Department of Prosthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Riley K. Allen
- Department of Prosthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC
| | - Daniel Whitley
- Department of Prosthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC
- Department of General Practice, School of Dentistry; and Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Va
| |
Collapse
|
3
|
Sadowski MJ, Pankiewicz J, Prelli F, Scholtzova H, Spinner DS, Kascsak RB, Kascsak RJ, Wisniewski T. Anti-PrP Mab 6D11 suppresses PrP(Sc) replication in prion infected myeloid precursor line FDC-P1/22L and in the lymphoreticular system in vivo. Neurobiol Dis 2009; 34:267-78. [PMID: 19385058 DOI: 10.1016/j.nbd.2009.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pathogenesis of prion diseases is related to conformational transformation of cellular prion protein (PrP(C)) into a toxic, infectious, and self-replicating conformer termed PrP(Sc). Following extracerebral inoculation, the replication of PrP(Sc) is confined for months to years to the lymporeticular system (LRS) before the secondary CNS involvement results in occurrence of neurological symptoms. Therefore, replication of PrP(Sc), in the early stage of infection can be targeted by therapeutic approaches, which like passive immunization have limited blood-brain-barrier penetration. In this study, we show that 6D11 anti-PrP monoclonal antibody (Mab) prevents infection on a FDC-P1 myeloid precursor cell line stably infected with 22L mouse adapted scrapie strain. Passive immunization of extracerebrally infected CD-1 mice with Mab 6D11 resulted in effective suppression of PrP(Sc) replication in the LRS. Although, a rebound of PrP(Sc) presence occurred when the Mab 6D11 treatment was stopped, passively immunized mice showed a prolongation of the incubation period by 36.9% (pb0.0001) and a significant decrease in CNS pathology compared to control groups receiving vehicle or murine IgG. Our results indicate that antibody-based therapeutic strategies can be used, even on a short-term basis, to delay or prevent disease in subjects accidentally exposed to prions.
Collapse
Affiliation(s)
- Martin J Sadowski
- Department of Neurology, New York University School of Medicine, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Azarpazhooh A, Fillery ED. Prion Disease: The Implications for Dentistry. J Endod 2008; 34:1158-66. [DOI: 10.1016/j.joen.2008.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
5
|
Walker J, Dickinson J, Sutton J, Marsh P, Raven N. Implications for Creutzfeldt-Jakob Disease (CJD) in Dentistry: a Review of Current Knowledge. J Dent Res 2008; 87:511-9. [DOI: 10.1177/154405910808700613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review explores our current understanding of the risks of (variant) Creutzfeldt-Jakob disease transmission via dental practice, and whether they merit the rigorous enforcement of improved standards of instrument cleaning and decontamination. The recognition of prions as novel infectious agents in humans has caused significant concern among the public and medical professionals alike. Creutzfeldt-Jakob disease (CJD) in humans has been shown to be transmissible via several routes, including transplantation, contaminated medical products, and via neurosurgery. While the likelihood of transmission via dentistry is undoubtedly very low, this may be amplified considerably by unknown risk factors, such as disease prevalence (particularly in the UK), altered tissue distribution of vCJD, and the failure of decontamination processes to address the inactivation of prions adequately. Since current diagnostic techniques are unable to detect PrPSc in human dental tissues, there is limited evidence for the presence of infectivity. Given these uncertainties, the control of risk by reinforced and improved decontamination practices seems the most appropriate response.
Collapse
Affiliation(s)
- J.T. Walker
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - J. Dickinson
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - J.M. Sutton
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - P.D. Marsh
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - N.D.H. Raven
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| |
Collapse
|
6
|
Palacios-Sánchez B, Esparza-Gómez GC, Campo-Trapero J, Cerero-Lapiedra R. Implications of prion diseases for dentistry: an update. ACTA ACUST UNITED AC 2008; 105:316-20. [PMID: 18280965 DOI: 10.1016/j.tripleo.2007.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
Prions are normal proteins present in all mammals, especially in the central nervous system (CNS) and lymphoreticular tissue. Their transformation into a highly infectious molecule gives rise to a group of diseases known as transmissible spongiform encephalopathies (TSEs), which cause vacuolar degeneration of gray matter and produce a fatal neurodegenerative disorder. Prion diseases have attracted considerable attention in recent years, and this review of the literature was designed to determine their implications for dentistry, studying the possibility of cross-transmission in the dental office and describing their oral manifestations. The main oral manifestations are dysphagia, dysarthria, paresthesias, dysesthesias, and dysgeusia. The most frequently involved oral tissues are the trigeminal ganglion, posterior third of the tongue, tonsils, and, much less commonly, alveolar nerves, gingiva, and salivary glands. Although no contagion has been reported in the dental setting to date, prions resist the usual dental sterilization systems and transmission of this type of disease remains a potential risk. It is therefore important for dentists to be aware of these diseases, to identify high-risk patients by obtaining an adequate clinical history, and to know the appropriate procedures to be followed.
Collapse
|
7
|
Lehto MT, Peery HE, Cashman NR. Current and future molecular diagnostics for prion diseases. Expert Rev Mol Diagn 2006; 6:597-611. [PMID: 16824033 DOI: 10.1586/14737159.6.4.597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is now widely held that the infectious agents underlying the transmissible spongiform encephalopathies are prions, which are primarily composed of a misfolded, protease-resistant isoform of the host prion protein. Untreatable prion disorders include some human diseases, such as Creutzfeldt-Jakob disease, and diseases of economically important animals, such as bovine spongiform encephalopathy (cattle) and chronic wasting disease (deer and elk). Detection and diagnosis of prion disease (and presymptomatic incubation) is contingent upon developing novel assays, which exploit properties uniquely possessed by this misfolded protein complex, rather than targeting an agent-specific nucleic acid. This review highlights some of the conventional and disruptive technologies developed to respond to this challenge.
Collapse
Affiliation(s)
- Marty T Lehto
- Amorfix Life Sciences, 3080 Yonge Street, Suite 6020, Toronto, M4N 3N1, Canada.
| | | | | |
Collapse
|
8
|
Noumbissi SS, Lozada JL, Boyne PJ, Rohrer MD, Clem D, Kim JS, Prasad H. Clinical, Histologic, and Histomorphometric Evaluation of Mineralized Solvent-dehydrated Bone Allograft (Puros) in Human Maxillary Sinus Grafts. J ORAL IMPLANTOL 2005; 31:171-9. [PMID: 16145844 DOI: 10.1563/1548-1336(2005)31[171:chaheo]2.0.co;2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Demineralized freeze-dried bone allografts (DFDBA) have been successfully used alone or in composite grafts for many decades. Little research has been done on the effect of retaining the mineral content of bone allografts. This study histologically and histomorphometrically evaluated a new mineralized bone allograft material placed in human atrophic maxillary sinuses. Seven partially edentulous patients requiring sinus grafts before implant placement were selected for this study Their age range was 56 to 81 years (mean 67.7 years). Test grafts consisted of a mineralized solvent-dehydrated cancellous bone allograft, and control grafts were a composite of DFDBA and deproteinized bovine bone xenograft (1:1). Bilateral cases (n = 3) received both test and control grafts on opposite sides, and unilateral cases received either a test (n = 3) or control (n = 1) graft only. At 10 months, core biopsies were taken from each graft site, and dental implants were placed into the augmented bone. All bone grafts resulted in new bone formation and all implants osseointegrated. Test grafts resorbed and were replaced by newly formed bone significantly faster and in greater quantities than were control grafts. No complications with grafts or implants were noted. Both test and control grafts achieved excellent results. The faster bone formation observed with the test graft may be due, in part, to its smaller particle size compared with the bovine portion of the control graft. Test grafts were either replaced by new bone or displayed new bone-to-particle surface contact in higher percentages than did control grafts. No differences in osseointegration or graft stability were noted 2 years after the study.
Collapse
|