1
|
Amiri F, Safiri S, Shamekh A, Ebrahimi A, Sullman MJM, Kolahi AA. Prevalence, deaths and disability-adjusted life years due to Alzheimer's disease and other dementias in Middle East and North Africa, 1990-2021. Sci Rep 2025; 15:7058. [PMID: 40016362 PMCID: PMC11868542 DOI: 10.1038/s41598-025-89899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
Alzheimer's disease (AD) ranks among the leading causes of morbidity and mortality worldwide. The objective was to evaluate the burden of AD and other dementias among the countries of the Middle East and North Africa (MENA) region by age and sex from 1990 to 2021. The data were sourced from the Global Burden of Disease (GBD) study 2021. The estimates are presented as counts and age-standardised rates per 100,000 accompanied by 95% uncertainty intervals (UIs). In 2021, AD and other dementias recorded an age-standardised prevalence of 772.7 per 100,000 in the MENA region (95% UI 671.2-877.6 per 100,000). This rate decreased by 4.9% in comparison to 1990, marking a statistically significant change. AD and other dementias also accounted for approximately 73.79 thousand deaths in the region in 2021, with the age-standardised rate decreasing by 8.6% compared to 1990. Moreover, the disability-adjusted life years (DALY) rate was 476.3 per 100,000 population (95% UI 225.6-1004.2), representing a 7.7% decrease from 1990 to 2021. Lebanon registered the highest point prevalence per 100,000 at 828.25, while the United Arab Emirates recorded the lowest at 652.43. The age-standardised point prevalence decreased from 1990 to 2021 in 13 of the MENA countries, while no significant changes were observed in eight of countries. Additionally, in 2021, women experienced higher prevalence rates, DALYs, compared to men. In the MENA region, age-standardised dementia prevalence rose with age in both sexes. The burden of dementia in MENA has decreased from 1990 to 2021, but it remains higher than global estimates. Furthermore, the findings indicate that dementia imposes a greater burden on the female population compared to males. To achieve a more accurate estimation of the burden of Alzheimer's disease and other dementias, more systematic studies in low- to middle-income countries within the MENA region are required.
Collapse
Affiliation(s)
- Fatemeh Amiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeid Safiri
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Shamekh
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ebrahimi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J M Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alcalá-Lozano R, Carmona-Hernández R, Ocampo-Romero AG, Sosa-Millán AL, Morelos-Santana ED, Abarca DZ, Castro-de-Aquino DV, Cabrera-Muñoz EA, Ramírez-Rodríguez GB, Sosa Ortiz AL, Garza-Villarreal EA, Saracco-Alvarez R, González Olvera JJ. Predicting the Beneficial Effects of Cognitive Stimulation and Transcranial Direct Current Stimulation in Amnestic Mild Cognitive Impairment with Clinical, Inflammation, and Human Microglia Exposed to Serum as Potential Markers: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Int J Mol Sci 2025; 26:1754. [PMID: 40004217 PMCID: PMC11855719 DOI: 10.3390/ijms26041754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
In amnestic mild cognitive impairment (aMCI), neuroinflammation evolves during disease progression, affecting microglial function and potentially accelerating the pathological process. Currently, no effective treatment exists, leading to explorations of various symptomatic approaches, though few target the underlying physiological mechanisms. Modulating inflammatory processes may be critical in slowing disease progression. Cognitive stimulation (CS) and transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (l-DLPFC) show promise, but the results are heterogeneous. Thus, a randomized, double-blind, placebo-controlled clinical trial is currently underway. The first-stage results were examined after three weeks of intervention in two groups: active tDCS combined with CS and sham tDCS combined with CS. Twenty-two participants underwent two assessments: T0 (baseline) and T1 (after 15 sessions of tDCS, active or sham, and 9 sessions of CS). The results demonstrated that CS improved cognition, increased brain-derived neurotrophic factor (BDNF) levels, and reduced peripheral proinflammatory cytokine levels (interleukin IL-6 and chemokine CX3CL1) in serum. This decrease in IL-6 may promote microglial proliferation and survival as a modulatory effect response, while the increase in BDNF might suggest a regulatory mechanism in microglia-neuron interaction responses. However, tDCS did not enhance the cognitive or modulatory effects of CS, suggesting that longer interventions might be required to achieve substantial benefits.
Collapse
Affiliation(s)
- Ruth Alcalá-Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Programa de Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rocio Carmona-Hernández
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Ana Gabriela Ocampo-Romero
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Adriana Leticia Sosa-Millán
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Erik Daniel Morelos-Santana
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Diana Zapata Abarca
- Dirección de Servicios Clínicos, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | - Dana Vianey Castro-de-Aquino
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Edith Araceli Cabrera-Muñoz
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Gerardo Bernabé Ramírez-Rodríguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico (E.A.C.-M.)
| | - Ana Luisa Sosa Ortiz
- Laboratorio de Demencias, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco (INNN), Mexico City 14269, Mexico
| | - Eduardo A. Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro 76230, Mexico
| | - Ricardo Saracco-Alvarez
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” (INPRFM), Mexico City 14370, Mexico
| | | |
Collapse
|
3
|
Liu Q, Lu C, Chen M, Feng P. Subclinical hyperthyroidism and the risk of dementia: A meta-analysis. Brain Behav 2024; 14:e70037. [PMID: 39295103 PMCID: PMC11410877 DOI: 10.1002/brb3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that thyroid dysfunction may be related to the risk of dementia. However, previous studies evaluating the association between subclinical hyperthyroidism and the risk of dementia showed inconsistent results. This systematic review and meta-analysis were performed to evaluate the relationship between subclinical hyperthyroidism and the incidence of dementia in the general population. METHODS Cohort studies relevant were retrieved by searching the electronic databases including PubMed, Web of Science, and Embase. A random-effects model was used to combine the data by incorporating the influence of between-study heterogeneity. Subgroup and meta-regression analyses were performed to investigate the source of heterogeneity. RESULTS Nine cohort studies including 49,218 community-derived participants were included. Among them, 3177 (6.5%) had subclinical hyperthyroidism at baseline. During a mean follow-up of 10.2 years, 4044 participants developed dementia. The pooled results showed that compared to the participants with euthyroidism, those with subclinical hyperthyroidism had a higher incidence of dementia (risk ratio: 1.38, 95% confidence interval: 1.09 to 1.74, p = .006; I2 = 47%). Subgroup analyses according to study design, age of the participants, methods for diagnosis of dementia, or analytic model did not significantly change the results. The univariate meta-regression showed that the cutoff of thyroid-stimulating hormone for defining subclinical hyperthyroidism negatively affected the association between subclinical hyperthyroidism and dementia (coefficient: -1.44, p = .009), which completely explained the heterogeneity (residual I2 = 0%). CONCLUSION Subjects with subclinical hyperthyroidism may have a higher risk of dementia compared to those with euthyroidism.
Collapse
Affiliation(s)
- Qiao Liu
- Department of EndocrinologyTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| | - Chaoyin Lu
- Department of EndocrinologyTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| | - Mengdie Chen
- Department of EndocrinologyTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| | - Ping Feng
- Department of EndocrinologyTaizhou Central Hospital (Taizhou University Hospital)TaizhouChina
| |
Collapse
|
4
|
Bransby L, Yassi N, Rosenich E, Buckley R, Li QX, Maruff P, Pase M, Lim YY. Associations between multidomain modifiable dementia risk factors with AD biomarkers and cognition in middle-aged and older adults. Neurobiol Aging 2024; 138:63-71. [PMID: 38537555 DOI: 10.1016/j.neurobiolaging.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
This study aimed to determine associations between modifiable dementia risk factors (MDRF), across domains mood symptomatology, lifestyle behaviors, cardiovascular conditions, cognitive/social engagement, sleep disorders/symptomatology, with cognition, beta-amyloid (Aβ) and tau, and brain volume. Middle-aged/older adults (n=82) enrolled in a sub-study of the Healthy Brain Project completed self-report questionnaires and a neuropsychological battery. Cerebrospinal fluid levels of Aβ 1-42, total tau (t-tau), and phosphorylated tau (p-tau181) (Roche Elecsys), and MRI markers of hippocampal volume and total brain volume were obtained. Participants were classified as no/single domain risk (≤1 domains) or multidomain risk (≥2 domains). Compared to the no/single domain risk group, the multidomain risk group performed worse on the Preclinical Alzheimer's Cognitive Composite (d=0.63, p=.005), and Executive Function (d=0.50, p=.016), and had increased p-tau181 (d=0.47, p=.042) and t-tau (d=0.54, p=.021). In middle-aged/older adults, multidomain MDRFs were related to increases in tau and worse cognition, but not Aβ or brain volume. Findings suggest that increases in AD biomarkers are apparent in midlife, particularly for individuals with greater burden, or variety of MDRFs.
Collapse
Affiliation(s)
- Lisa Bransby
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Emily Rosenich
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Rachel Buckley
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Paul Maruff
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Cogstate Ltd., Melbourne, Victoria, Australia
| | - Matthew Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia; Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yen Ying Lim
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|