1
|
de La Cruz L, Bui D, Moreno CM, Vivas O. Sympathetic motor neuron dysfunction is a missing link in age-associated sympathetic overactivity. eLife 2024; 12:RP91663. [PMID: 39625473 PMCID: PMC11614386 DOI: 10.7554/elife.91663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.
Collapse
Affiliation(s)
- Lizbeth de La Cruz
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Derek Bui
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
de la Cruz L, Bui D, Moreno CM, Vivas O. Sympathetic Motor Neuron Dysfunction is a Missing Link in Age-Associated Sympathetic Overactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559800. [PMID: 37808870 PMCID: PMC10557755 DOI: 10.1101/2023.09.27.559800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.
Collapse
Affiliation(s)
- Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Derek Bui
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Claudia M. Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Howard Hughes Medical Institute
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
- Department of Pharmacology, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Jacquemot N, Wersinger E, Brabet P, Cia D. Hydrogen Peroxide Affects the Electroretinogram of Isolated Perfused Rat Retina. Curr Eye Res 2023; 48:1179-1188. [PMID: 37706511 DOI: 10.1080/02713683.2023.2256029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To evaluate the effects of H2O2 as an oxidant on the electroretinogram (ERG) in isolated rat retina. METHODS Retinas were isolated from rat eyes and perfused with a nutrient solution. ERGs were recorded every 3 min. Once the signal was at a steady state, H2O2 was added to the perfusion solution. RESULTS H2O2 caused instantaneous and transient changes in amplitudes and implicit times of the ERG, followed by changes in retinal survival curves. H2O2 0.2 mM produced a rapid increase in b-wave amplitude, followed by a return to the initial value and a survival curve above the control (without H2O2). A slight increase in a-wave was observed, followed by a decrease and a recovery above the control. The slow PIII decreased and then recovered to the initial value. H2O2 0.6 mM induced a small increase in b-wave amplitude, followed by a rapid decrease without recovery. The a-wave and slow PIII decreased rapidly without recovery. The implicit times of the a-wave and b-wave increased moderately with a low dose of H2O2, whereas they significantly increased with a high dose. Whatever the dose, the slow PIII implicit time increased significantly, followed by a return to the initial value. Barium increased the a-wave and b-wave, and then H2O2 reduced the two waves with a stronger effect on the a-wave. Aspartate and barium isolated the fast PIII, which decreased after H2O2 application. CONCLUSIONS H2O2 affects retinal function as shown by ERGs in isolated rat retina. The response differs with the dose of H2O2, suggesting that mechanisms underlying the action at low doses might be different from those at high doses. Our results also suggest an effect of H2O2 on ionic currents and/or neurotransmitter releases involved in the generation of the ERG and indicate a more pronounced effect on photoreceptors than on postsynaptic cells.
Collapse
Affiliation(s)
- Nathalie Jacquemot
- Laboratoire de Biophysique Neurosensorielle, Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Clermont-Ferrand, France
| | - Eric Wersinger
- Laboratoire de Biophysique Neurosensorielle, Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Clermont-Ferrand, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, Montpellier, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, Université Clermont Auvergne, INSERM U1107 NEURO-DOL, Clermont-Ferrand, France
| |
Collapse
|
4
|
Chen L, Christenson Wick Z, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg PA, Soler I, Feng Y, Cai DJ, Shuman T. Progressive Excitability Changes in the Medial Entorhinal Cortex in the 3xTg Mouse Model of Alzheimer's Disease Pathology. J Neurosci 2023; 43:7441-7454. [PMID: 37714705 PMCID: PMC10621765 DOI: 10.1523/jneurosci.1204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in hippocampus, but less is known about changes in medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at 3 and 10 months of age in the 3xTg mouse model of AD pathology, using male and female mice. At 3 months of age, before the onset of memory impairments, we found early hyperexcitability in intrinsic properties of MECII stellate and pyramidal cells, but this was balanced by a relative reduction in synaptic excitation (E) compared with inhibition (I; E/I ratio), suggesting intact homeostatic mechanisms regulating MECII activity. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable, and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsic and synaptic hyperexcitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this postsymptomatic time point, which may contribute to the emergence of memory deficits in AD.SIGNIFICANCE STATEMENT AD causes cognitive deficits, but the specific neural circuits that are damaged to drive changes in memory remain unknown. Using a mouse model of AD pathology that expresses both amyloid and tau transgenes, we found that neurons in the MEC have altered excitability. Before the onset of memory impairments, neurons in layer 2 of MEC had increased intrinsic excitability, but this was balanced by reduced inputs onto the cell. However, after the onset of memory impairments, stellate cells in MEC became further hyperexcitable, with increased excitability exacerbated by increased synaptic inputs. Thus, it appears that MEC stellate cells are uniquely disrupted during the progression of memory deficits and may contribute to cognitive deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nick Vaughan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Hunter College, City University of New York, New York, New York 10065
| | - Angelina Galas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- New York University, New York, New York 10012
| | - Keziah S Diego
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ivan Soler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
5
|
Crochemore C, Chica C, Garagnani P, Lattanzi G, Horvath S, Sarasin A, Franceschi C, Bacalini MG, Ricchetti M. Epigenomic signature of accelerated ageing in progeroid Cockayne syndrome. Aging Cell 2023; 22:e13959. [PMID: 37688320 PMCID: PMC10577576 DOI: 10.1111/acel.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes. A large fraction of CS-specific DNAm changes were associated with expression changes in CS samples, including in previously reported post-mortem cerebella. The progeroid phenotype of CS was further supported by epigenomic hallmarks of ageing: the prediction of DNAm of repetitive elements suggested an hypomethylation of Alu sequences in CS, and the epigenetic clock returned a marked increase in CS biological age respect to healthy and UVSS cells. The epigenomic remodelling of accelerated ageing in CS displayed both commonalities and differences with other progeroid diseases and regular ageing. CS shared DNAm changes with normal ageing more than other progeroid diseases do, and included genes functionally validated for regular ageing. Collectively, our results support the existence of an epigenomic basis of accelerated ageing in CS and unveil new genes and pathways that are potentially associated with the progeroid/degenerative phenotype.
Collapse
Affiliation(s)
- Clément Crochemore
- Institut Pasteur, Université Paris Cité, Molecular Mechanisms of Pathological and Physiological Ageing Unit, UMR3738 CNRSParisFrance
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR3738 CNRSParisFrance
- Sup'BiotechVillejuifFrance
| | - Claudia Chica
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Paolo Garagnani
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”, Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
- Department of Biostatistics Fielding School of Public HealthUniversity of CaliforniaLos AngelesUSA
| | - Alain Sarasin
- Laboratory of Genetic Stability and Oncogenesis, Institut de Cancérologie Gustave RoussyUniversity Paris‐SudVillejuifFrance
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and MechanicsLobachevsky UniversityNizhniy NovgorodRussia
| | | | - Miria Ricchetti
- Institut Pasteur, Université Paris Cité, Molecular Mechanisms of Pathological and Physiological Ageing Unit, UMR3738 CNRSParisFrance
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR3738 CNRSParisFrance
| |
Collapse
|
6
|
Zhang M, Bouland GA, Holstege H, Reinders MJT. Identifying Aging and Alzheimer Disease-Associated Somatic Variations in Excitatory Neurons From the Human Frontal Cortex. Neurol Genet 2023; 9:e200066. [PMID: 37123987 PMCID: PMC10136684 DOI: 10.1212/nxg.0000000000200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/03/2023] [Indexed: 05/02/2023]
Abstract
Background and Objectives With age, somatic mutations accumulated in human brain cells can lead to various neurologic disorders and brain tumors. Because the incidence rate of Alzheimer disease (AD) increases exponentially with age, investigating the association between AD and the accumulation of somatic mutation can help understand the etiology of AD. Methods We designed a somatic mutation detection workflow by contrasting genotypes derived from whole-genome sequencing (WGS) data with genotypes derived from scRNA-seq data and applied this workflow to 76 participants from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP) cohort. We focused only on excitatory neurons, the dominant cell type in the scRNA-seq data. Results We identified 196 sites that harbored at least 1 individual with an excitatory neuron-specific somatic mutation (ENSM), and these 196 sites were mapped to 127 genes. The single base substitution (SBS) pattern of the putative ENSMs was best explained by signature SBS5 from the Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, a clock-like pattern correlating with the age of the individual. The count of ENSMs per individual also showed an increasing trend with age. Among the mutated sites, we found 2 sites tend to have more mutations in older individuals (16:6899517 [RBFOX1], p = 0.04; 4:21788463 [KCNIP4], p < 0.05). In addition, 2 sites were found to have a higher odds ratio to detect a somatic mutation in AD samples (6:73374221 [KCNQ5], p = 0.01 and 13:36667102 [DCLK1], p = 0.02). Thirty-two genes that harbor somatic mutations unique to AD and the KCNQ5 and DCLK1 genes were used for gene ontology (GO)-term enrichment analysis. We found the AD-specific ENSMs enriched in the GO-term "vocalization behavior" and "intraspecies interaction between organisms." Of interest we observed both age-specific and AD-specific ENSMs enriched in the K+ channel-associated genes. Discussion Our results show that combining scRNA-seq and WGS data can successfully detect putative somatic mutations. The putative somatic mutations detected from ROSMAP data set have provided new insights into the association of AD and aging with brain somatic mutagenesis.
Collapse
Affiliation(s)
- Meng Zhang
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Gerard A Bouland
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Henne Holstege
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
7
|
Li S, de Lecea L. The brake matters: Hyperexcitable arousal circuits in sleep fragmentation with age. Clin Transl Med 2022; 12:e900. [PMID: 35696605 PMCID: PMC9191867 DOI: 10.1002/ctm2.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shi‐Bin Li
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCaliforniaUSA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neurosciences InstituteStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
8
|
Melichercik L, Tvrdik T, Novakova K, Nemec M, Kalinak M, Baciak L, Kasparova S. Huperzine aggravated neurochemical and volumetric changes induced by D-galactose in the model of neurodegeneration in rats. Neurochem Int 2022; 158:105365. [DOI: 10.1016/j.neuint.2022.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
|
9
|
Gräfenstein A, Rumancev C, Pollak R, Hämisch B, Galbierz V, Schroeder WH, Garrevoet J, Falkenberg G, Vöpel T, Huber K, Ebbinghaus S, Rosenhahn A. Spatial Distribution of Intracellular Ion Concentrations in Aggregate-Forming HeLa Cells Analyzed by μ-XRF Imaging. ChemistryOpen 2022; 11:e202200024. [PMID: 35363437 PMCID: PMC8973254 DOI: 10.1002/open.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Protein aggregation is a hallmark of several severe neurodegenerative disorders such as Huntington's, Parkinson's, or Alzheimer's disease. Metal ions play a profound role in protein aggregation and altered metal-ion homeostasis is associated with disease progression. Here we utilize μ-X-ray fluorescence imaging in combination with rapid freezing to resolve the elemental distribution of phosphorus, sulfur, potassium, and zinc in huntingtin exon-1-mYFP expressing HeLa cells. Using quantitative XRF analysis, we find a threefold increase in zinc and a 10-fold enrichment of potassium that can be attributed to cellular stress response. While the averaged intracellular ion areal masses are significantly different in aggregate-containing cells, a local intracellular analysis shows no different ion content at the location of intracellular inclusion bodies. The results are compared to corresponding experiments on HeLa cells forming pseudoisocyanine chloride aggregates. As those show similar results, changes in ion concentrations are not exclusively linked to huntingtin exon-1 amyloid formation.
Collapse
Affiliation(s)
- Andreas Gräfenstein
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Christoph Rumancev
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| | - Roland Pollak
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | | | - Vanessa Galbierz
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | - Walter H. Schroeder
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
- Nanotech ConsultingLiblarer Strasse 850321BrühlGermany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 85HamburgGermany
| | | | - Tobias Vöpel
- Physical Chemistry IIRuhr University Bochum44801BochumGermany
| | - Klaus Huber
- Physical ChemistryUniversity of Paderborn33098PaderbornGermany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical ChemistryTU BraunschweigRebenring 5638106BraunschweigGermany
| | - Axel Rosenhahn
- Analytical Chemistry – BiointerfacesRuhr University Bochum44801BochumGermany
| |
Collapse
|
10
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
11
|
Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022; 375:eabh3021. [PMID: 35201886 PMCID: PMC9107327 DOI: 10.1126/science.abh3021] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
| | | | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander Eckehart Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Li Z, Dong W, Zhang X, Lu JM, Mei YA, Hu C. Protein Kinase C Controls the Excitability of Cortical Pyramidal Neurons by Regulating Kv2.2 Channel Activity. Neurosci Bull 2021; 38:135-148. [PMID: 34542799 PMCID: PMC8821747 DOI: 10.1007/s12264-021-00773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023] Open
Abstract
The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.
Collapse
Affiliation(s)
- Zhaoyang Li
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Wenhao Dong
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xinyuan Zhang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jun-Mei Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan-Ai Mei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Changlong Hu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
13
|
Maqoud F, Scala R, Hoxha M, Zappacosta B, Tricarico D. ATP-sensitive potassium channel subunits in the neuroinflammation: novel drug targets in neurodegenerative disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:130-149. [PMID: 33463481 DOI: 10.2174/1871527320666210119095626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
Arachidonic acids and its metabolites modulate plenty of ligand-gated, voltage-dependent ion channels, and metabolically regulated potassium channels including ATP-sensitive potassium channels (KATP). KATP channels are hetero-multimeric complexes of sulfonylureas receptors (SUR1, SUR2A or SUR2B) and the pore-forming subunits (Kir6.1 and Kir6.2) likewise expressed in the pre-post synapsis of neurons and inflammatory cells, thereby affecting their proliferation and activity. KATP channels are involved in amyloid-β (Aβ)-induced pathology, therefore emerging as therapeutic targets against Alzheimer's and related diseases. The modulation of these channels can represent an innovative strategy for the treatment of neurodegenerative disorders; nevertheless, the currently available drugs are not selective for brain KATP channels and show contrasting effects. This phenomenon can be a consequence of the multiple physiological roles of the different varieties of KATP channels. Openings of cardiac and muscular KATP channel subunits, is protective against caspase-dependent atrophy in these tissues and some neurodegenerative disorders, whereas in some neuroinflammatory diseases benefits can be obtained through the inhibition of neuronal KATP channel subunits. For example, glibenclamide exerts an anti-inflammatory effect in respiratory, digestive, urological, and central nervous system (CNS) diseases, as well as in ischemia-reperfusion injury associated with abnormal SUR1-Trpm4/TNF-α or SUR1-Trpm4/ Nos2/ROS signaling. Despite this strategy is promising, glibenclamide may have limited clinical efficacy due to its unselective blocking action of SUR2A/B subunits also expressed in cardiovascular apparatus with pro-arrhythmic effects and SUR1 expressed in pancreatic beta cells with hypoglycemic risk. Alternatively, neuronal selective dual modulators showing agonist/antagonist actions on KATP channels can be an option.
Collapse
Affiliation(s)
- Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Rosa Scala
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Bruno Zappacosta
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, "Catholic University Our Lady of Good Counsel", Tirana. Albania
| | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, via Orabona 4, 70125-I. Italy
| |
Collapse
|
14
|
Grillo M, Palmer C, Holmes N, Sang F, Larner AC, Bhosale R, Shaw PE. Stat3 oxidation-dependent regulation of gene expression impacts on developmental processes and involves cooperation with Hif-1α. PLoS One 2020; 15:e0244255. [PMID: 33332446 PMCID: PMC7746180 DOI: 10.1371/journal.pone.0244255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023] Open
Abstract
Reactive oxygen species are bona fide intracellular second messengers that influence cell metabolism and aging by mechanisms that are incompletely resolved. Mitochondria generate superoxide that is dis-mutated to hydrogen peroxide, which in turn oxidises cysteine-based enzymes such as phosphatases, peroxiredoxins and redox-sensitive transcription factors to modulate their activity. Signal Transducer and Activator of Transcription 3 (Stat3) has been shown to participate in an oxidative relay with peroxiredoxin II but the impact of Stat3 oxidation on target gene expression and its biological consequences remain to be established. Thus, we created murine embryonic fibroblasts (MEFs) that express either WT-Stat3 or a redox-insensitive mutant of Stat3 (Stat3-C3S). The Stat3-C3S cells differed from WT-Stat3 cells in morphology, proliferation and resistance to oxidative stress; in response to cytokine stimulation, they displayed elevated Stat3 tyrosine phosphorylation and Socs3 expression, implying that Stat3-C3S is insensitive to oxidative inhibition. Comparative analysis of global gene expression in WT-Stat3 and Stat3-C3S cells revealed differential expression (DE) of genes both under basal conditions and during oxidative stress. Using differential gene regulation pattern analysis, we identified 199 genes clustered into 10 distinct patterns that were selectively responsive to Stat3 oxidation. GO term analysis identified down-regulated genes to be enriched for tissue/organ development and morphogenesis and up-regulated genes to be enriched for cell-cell adhesion, immune responses and transport related processes. Although most DE gene promoters contain consensus Stat3 inducible elements (SIEs), our chromatin immunoprecipitation (ChIP) and ChIP-seq analyses did not detect Stat3 binding at these sites in control or oxidant-stimulated cells, suggesting that oxidised Stat3 regulates these genes indirectly. Our further computational analysis revealed enrichment of hypoxia response elements (HREs) within DE gene promoters, implying a role for Hif-1. Experimental validation revealed that efficient stabilisation of Hif-1α in response to oxidative stress or hypoxia required an oxidation-competent Stat3 and that depletion of Hif-1α suppressed the inducible expression of Kcnb1, a representative DE gene. Our data suggest that Stat3 and Hif-1α cooperate to regulate genes involved in immune functions and developmental processes in response to oxidative stress.
Collapse
Affiliation(s)
- Michela Grillo
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Carolyn Palmer
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Nadine Holmes
- Deep-Seq Unit, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Fei Sang
- Deep-Seq Unit, School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Peter E. Shaw
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
15
|
Fenyves BG, Arnold A, Gharat VG, Haab C, Tishinov K, Peter F, de Quervain D, Papassotiropoulos A, Stetak A. Dual Role of an mps-2/KCNE-Dependent Pathway in Long-Term Memory and Age-Dependent Memory Decline. Curr Biol 2020; 31:527-539.e7. [PMID: 33259792 DOI: 10.1016/j.cub.2020.10.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023]
Abstract
Activity-dependent persistent changes in neuronal intrinsic excitability and synaptic strength are underlying learning and memory. Voltage-gated potassium (Kv) channels are potential regulators of memory and may be linked to age-dependent neuronal disfunction. MinK-related peptides (MiRPs) are conserved transmembrane proteins modulating Kv channels; however, their possible role in the regulation of memory and age-dependent memory decline are unknown. Here, we show that, in C. elegans, mps-2 is the sole member of the MiRP family that controls exclusively long-term associative memory (LTAM) in AVA neuron. In addition, we demonstrate that mps-2 also plays a critical role in age-dependent memory decline. In young adult worms, mps-2 is transcriptionally upregulated by CRH-1/cyclic AMP (cAMP)-response-binding protein (CREB) during LTAM, although the mps-2 baseline expression is CREB independent and instead, during aging, relies on nhr-66, which acts as an age-dependent repressor. Deletion of nhr-66 or its binding element in the mps-2 promoter prevents age-dependent transcriptional repression of mps-2 and memory decline. Finally, MPS-2 acts through the modulation of the Kv2.1/KVS-3 and Kv2.2/KVS-4 heteromeric potassium channels. Altogether, we describe a conserved MPS-2/KVS-3/KVS-4 pathway essential for LTAM and also for a programmed control of physiological age-dependent memory decline.
Collapse
Affiliation(s)
- Bank G Fenyves
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Department of Molecular Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Andreas Arnold
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Vaibhav G Gharat
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Carmen Haab
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Kiril Tishinov
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Fabian Peter
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland
| | - Dominique de Quervain
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland
| | - Andreas Papassotiropoulos
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Biozentrum, Life Sciences Training Facility, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland
| | - Attila Stetak
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; Division of Molecular Neuroscience, Department of Psychology, University of Basel, Birmannsgasse 8, 4055 Basel, Switzerland; University Psychiatric Clinics, University of Basel, Wilhelm Klein-Strasse 27, 4055 Basel, Switzerland.
| |
Collapse
|
16
|
Dopamine-Dependent QR2 Pathway Activation in CA1 Interneurons Enhances Novel Memory Formation. J Neurosci 2020; 40:8698-8714. [PMID: 33046554 DOI: 10.1523/jneurosci.1243-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases.SIGNIFICANCE STATEMENT One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.
Collapse
|
17
|
Song MS, Sim HJ, Kang S, Park S, Seo K, Lee SY. Pharmacological inhibition of Kv3 on oxidative stress-induced cataract progression. Biochem Biophys Res Commun 2020; 533:1255-1261. [PMID: 33066958 DOI: 10.1016/j.bbrc.2020.09.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/02/2023]
Abstract
Oxidative stress is one of the most important risk factors for cataractogenesis. Previous studies have indicated that BDS-II, a Kv3 channel blocker, plays pivotal roles in oxidative stress-related diseases. This study demonstrates that BDS-II exerts a protective effect on cataractogenesis. Specifically, BDS-II was observed to inhibit lens opacity induced by H2O2. BDS-II was also determined to inhibit cataract progression in a sodium selenite-induced in vivo cataract model by inhibiting reduction of the total GSH. In addition, BDS-II was demonstrated to protect human lens epithelial cells against H2O2-induced cell death. Our results suggest that BDS-II is a potential pharmacological candidate in cataract therapy.
Collapse
Affiliation(s)
- Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea
| | - Hun Ju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwan Park
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Republic of Korea.
| |
Collapse
|
18
|
Trombetta-Lima M, Krabbendam IE, Dolga AM. Calcium-activated potassium channels: implications for aging and age-related neurodegeneration. Int J Biochem Cell Biol 2020; 123:105748. [PMID: 32353429 DOI: 10.1016/j.biocel.2020.105748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Population aging, as well as the handling of age-associated diseases, is a worldwide increasing concern. Among them, Alzheimer's disease stands out as the major cause of dementia culminating in full dependence on other people for basic functions. However, despite numerous efforts, in the last decades, there was no new approved therapeutic drug for the treatment of the disease. Calcium-activated potassium channels have emerged as a potential tool for neuronal protection by modulating intracellular calcium signaling. Their subcellular localization is determinant of their functional effects. When located on the plasma membrane of neuronal cells, they can modulate synaptic function, while their activation at the inner mitochondrial membrane has a neuroprotective potential via the attenuation of mitochondrial reactive oxygen species in conditions of oxidative stress. Here we review the dual role of these channels in the aging phenotype and Alzheimer's disease pathology and discuss their potential use as a therapeutic tool.
Collapse
Affiliation(s)
- Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands; Medical School, Neurology Department, University of São Paulo (USP), 01246903 São Paulo, Brazil
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
19
|
Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer's disease: An update. Mech Ageing Dev 2019; 185:111197. [PMID: 31862274 DOI: 10.1016/j.mad.2019.111197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
With more than 80 subunits, potassium (K+) channels represent a group of ion channels showing high degree of diversity and ubiquity. They play important role in the control of membrane depolarization and cell excitability in several tissues, including the brain. Controlling the intracellular and extracellular K+ flow in cells, they also modulate the hormone and neurotransmitter release, apoptosis and cell proliferation. It is therefore not surprising that an improper functioning of K+ channels in neurons has been associated with pathophysiology of a wide range of neurological disorders, especially Alzheimer's disease (AD). This review aims to give a comprehensive overview of the basic properties and pathophysiological functions of the main classes of K+ channels in the context of disease processes, also discussing the progress, challenges and opportunities to develop drugs targeting these channels as potential pharmacological approach for AD treatment.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | | | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Yozgat, Turkey.
| |
Collapse
|
20
|
Yu J, Yang J. Ion channels as potential redox sensors in lysosomes. Channels (Austin) 2019; 13:477-482. [PMID: 31662029 PMCID: PMC6833971 DOI: 10.1080/19336950.2019.1684428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Lysosomes are central organelles that recycle materials and energy to maintain intracellular homeostasis. Lysosomes are capable of sensing environmental cues such as nutrition to regulate their function accordingly. Whether lysosomes can sense redox signaling, however, was unclear. Here in this review, we summarized recent evidence of lysosomal ion channel as redox sensors for this organelle. We also discussed their roles in lysosomal diseases that features imbalanced redox.
Collapse
Affiliation(s)
- Jie Yu
- Sports Science Research Center, Zhejiang College of Sports, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
RTA 408 Inhibits Interleukin-1β-Induced MMP-9 Expression via Suppressing Protein Kinase-Dependent NF-κB and AP-1 Activation in Rat Brain Astrocytes. Int J Mol Sci 2019; 20:ijms20112826. [PMID: 31185608 PMCID: PMC6600142 DOI: 10.3390/ijms20112826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is characterized by the elevated expression of various inflammatory proteins, including matrix metalloproteinases (MMPs), induced by various pro-inflammatory mediators, which play a critical role in neurodegenerative disorders. Interleukin-1β (IL-1β) has been shown to induce the upregulation of MMP-9 through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-reactive oxygen species (ROS)-dependent signaling pathways. N-(2-cyano-3,12-dioxo-28-noroleana-1,9(11)-dien-17-yl)-2-2-difluoropropanamide (RTA 408), a novel synthetic triterpenoid, has been shown to possess anti-oxidant and anti-inflammatory properties in various types of cells. Here, we evaluated the effects of RTA 408 on IL-1β-induced inflammatory responses by suppressing MMP-9 expression in a rat brain astrocyte (RBA-1) line. IL-1β-induced MMP-9 protein and mRNA expression, and promoter activity were attenuated by RTA 408. The increased level of ROS generation in RBA-1 cells exposed to IL-1β was attenuated by RTA 408, as determined by using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) and CellROX. In addition, the inhibitory effects of RTA 408 on MMP-9 expression resulted from the suppression of the IL-1β-stimulated activation of Pyk2 (proline-rich tyrosine kinase), platelet-derived growth factor receptor β (PDGFRβ), Akt, ROS, and mitogen-activated protein kinases (MAPKs). Pretreatment with RTA 408 attenuated the IL-1β-induced c-Jun phosphorylation, mRNA expression, and promoter activity. IL-1β-stimulated nuclear factor-κB (NF-κB) p65 phosphorylation, translocation, and promoter activity were also attenuated by RTA 408. Furthermore, IL-1β-induced glial fibrillary acidic protein (GFAP) protein and mRNA expression, and cell migration were attenuated by pretreatment with RTA 408. These results provide new insights into the mechanisms by which RTA 408 attenuates IL-1β-mediated inflammatory responses and exerts beneficial effects for the management of brain diseases.
Collapse
|
22
|
Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J Chem Neuroanat 2019; 95:70-80. [DOI: 10.1016/j.jchemneu.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
|
23
|
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging Anti-Aging Strategies - Scientific Basis and Efficacy. Aging Dis 2018; 9:1165-1184. [PMID: 30574426 PMCID: PMC6284760 DOI: 10.14336/ad.2018.1026] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
The prevalence of age-related diseases is in an upward trend due to increased life expectancy in humans. Age-related conditions are among the leading causes of morbidity and death worldwide currently. Therefore, there is an urgent need to find apt interventions that slow down aging and reduce or postpone the incidence of debilitating age-related diseases. This review discusses the efficacy of emerging anti-aging approaches for maintaining better health in old age. There are many anti-aging strategies in development, which include procedures such as augmentation of autophagy, elimination of senescent cells, transfusion of plasma from young blood, intermittent fasting, enhancement of adult neurogenesis, physical exercise, antioxidant intake, and stem cell therapy. Multiple pre-clinical studies suggest that administration of autophagy enhancers, senolytic drugs, plasma from young blood, drugs that enhance neurogenesis and BDNF are promising approaches to sustain normal health during aging and also to postpone age-related neurodegenerative diseases such as Alzheimer's disease. Stem cell therapy has also shown promise for improving regeneration and function of the aged or Alzheimer's disease brain. Several of these approaches are awaiting critical appraisal in clinical trials to determine their long-term efficacy and possible adverse effects. On the other hand, procedures such as intermittent fasting, physical exercise, intake of antioxidants such as resveratrol and curcumin have shown considerable promise for improving function in aging, some of which are ready for large-scale clinical trials, as they are non-invasive, and seem to have minimal side effects. In summary, several approaches are at the forefront of becoming mainstream therapies for combating aging and postponing age-related diseases in the coming years.
Collapse
Affiliation(s)
- Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, Texas 76504, USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas 77843, USA
| |
Collapse
|
24
|
Susceptibility of the cerebral cortex to spreading depolarization in neurological disease states: The impact of aging. Neurochem Int 2018; 127:125-136. [PMID: 30336178 DOI: 10.1016/j.neuint.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/17/2022]
Abstract
Secondary injury following acute brain insults significantly contributes to poorer neurological outcome. The spontaneous, recurrent occurrence of spreading depolarization events (SD) has been recognized as a potent secondary injury mechanism in subarachnoid hemorrhage, malignant ischemic stroke and traumatic brain injury. In addition, SD is the underlying mechanism of the aura symptoms of migraineurs. The susceptibility of the nervous tissue to SD is subject to the metabolic status of the tissue, the ionic composition of the extracellular space, and the functional status of ion pumps, voltage-gated and other cation channels, glutamate receptors and excitatory amino acid transporters. All these mechanisms tune the excitability of the nervous tissue. Aging has also been found to alter SD susceptibility, which appears to be highest at young adulthood, and decline over the aging process. The lower susceptibility of the cerebral gray matter to SD in the old brain may be caused by the age-related impairment of mechanisms implicated in ion translocations between the intra- and extracellular compartments, glutamate signaling and surplus potassium and glutamate clearance. Even though the aging nervous tissue is thus less able to sustain SD, the consequences of SD recurrence in the old brain have proven to be graver, possibly leading to accelerated lesion maturation. Taken that recurrent SDs may pose an increased burden in the aging injured brain, the benefit of therapeutic approaches to restrict SD generation and propagation may be particularly relevant for elderly patients.
Collapse
|
25
|
Bezine M, Maatoug S, Ben Khalifa R, Debbabi M, Zarrouk A, Wang Y, Griffiths WJ, Nury T, Samadi M, Vejux A, de Sèze J, Moreau T, Kharrat R, El Ayeb M, Lizard G. Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie 2018; 153:56-69. [DOI: 10.1016/j.biochi.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
|
26
|
The effect of oxysterols on nerve impulses. Biochimie 2018; 153:46-51. [DOI: 10.1016/j.biochi.2018.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022]
|
27
|
Wei Y, Shin MR, Sesti F. Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease. Cell Death Dis 2018; 9:820. [PMID: 30050035 PMCID: PMC6062629 DOI: 10.1038/s41419-018-0886-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023]
Abstract
Oxidative modification of the voltage-gated K+ channel subfamily B member 1 (KCNB1, Kv2.1) is emerging as a mechanism of neuronal vulnerability potentially capable of affecting multiple conditions associated with oxidative stress, from normal aging to neurodegenerative disease. In this study we report that oxidation of KCNB1 channels is exacerbated in the post mortem brains of Alzheimer’s disease (AD) donors compared to age-matched controls. In addition, phosphorylation of Focal Adhesion kinases (FAK) and Src tyrosine kinases, two key signaling steps that follow KCNB1 oxidation, is also strengthened in AD vs. control brains. Quadruple transgenic mice expressing a non-oxidizable form of KCNB1 in the 3xTg-AD background (APPSWE, PS1M146V, and tauP301L), exhibit improved working memory along with reduced brain inflammation, protein carbonylation and intraneuronal β-amyloid (Aβ) compared to 3xTg-AD mice or mice expressing the wild type (WT) KCNB1 channel. We conclude that oxidation of KCNB1 channels is a mechanism of neuronal vulnerability that is pervasive in the vertebrate brain.
Collapse
Affiliation(s)
- Yu Wei
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Mi Ryung Shin
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
28
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
29
|
Xiang C, Teng Y, Yao C, Li X, Cao M, Li X, Pan G, Lu K, Galons H, Yu P. Antioxidant properties of flavonoid derivatives and their hepatoprotective effects on CCl 4 induced acute liver injury in mice. RSC Adv 2018; 8:15366-15371. [PMID: 35539467 PMCID: PMC9080091 DOI: 10.1039/c8ra02523a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
Excessive accumulation of free radicals in the body can cause liver damage, aging, cancer, stroke, and myocardial infarction. Anastatin B, a skeletal flavonoid, was reported to have antioxidant and hepatoprotective effects. Anastatin B derivatives, compound 1 and 2, were synthesized by our group previously. In this study, their antioxidant activity and hepatoprotective mechanism were studied using chemical evaluation methods, a cellular model of hydrogen peroxide (H2O2)-induced oxidative damage, and a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Results from the chemical evaluation suggested that both compounds had good antioxidant power and radical scavenging ability in vitro. MTT assay showed that both compounds had cytoprotective activity in H2O2-treated PC12 cells. Moreover, their hepatoprotective activities evaluated using a mouse model of CCl4-induced liver injury that compared with the model group, pretreatment with compound 1 and 2 significantly decreased alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels; reduced the liver tissue damage; and increased glutathione content. However, compound 2 was a more effective hepatoprotectant than compound 1 was. Finally, the amount of TNF-α and cytochrome P450 2E1 (CYP2E1) were significantly downregulated in compound 1 and 2 pretreatment groups. Collectively, our findings demonstrate that both compounds have potential antioxidant activity and hepatoprotective effect in vitro and in vivo. Further chemo-biological study and investigation of the compounds' enzymatic targets are ongoing.
Collapse
Affiliation(s)
- Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Chaoran Yao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xuehui Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Menglin Cao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xuzhe Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Guojun Pan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Hervé Galons
- UCTBS, INSERM U1022, Université Paris Descartes 4 Avenue de l'Observatoire 75006 France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
30
|
Wang N, Ji S, Zhang H, Mei S, Qiao L, Jin X. Herba Cistanches: Anti-aging. Aging Dis 2017; 8:740-759. [PMID: 29344414 PMCID: PMC5758349 DOI: 10.14336/ad.2017.0720] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
The Cistanche species ("Rou Cong Rong" in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches' anti-aging effect and promote its clinical application as an anti-aging herbal medicine.
Collapse
Affiliation(s)
- Ningqun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shaozhen Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Hao Zhang
- Department of Radiology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lumin Qiao
- Department of Emergency, Traditional Chinese Medicine Hospital of Yinchuan, Ningxia Hui Nationality Autonomous Region 750001, China.
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
31
|
Xu Z, Feng W, Shen Q, Yu N, Yu K, Wang S, Chen Z, Shioda S, Guo Y. Rhizoma Coptidis and Berberine as a Natural Drug to Combat Aging and Aging-Related Diseases via Anti-Oxidation and AMPK Activation. Aging Dis 2017; 8:760-777. [PMID: 29344415 PMCID: PMC5758350 DOI: 10.14336/ad.2016.0620] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Collapse
Affiliation(s)
- Zhifang Xu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Feng
- 3South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing 102618, China
| | - Qian Shen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Nannan Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kun Yu
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenjun Wang
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhigang Chen
- 4Dongfang hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Seiji Shioda
- 5Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Shinagawa, Tokyo 142-8501, Japan
| | - Yi Guo
- 1Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
32
|
Bezine M, Debbabi M, Nury T, Ben-Khalifa R, Samadi M, Cherkaoui-Malki M, Vejux A, Raas Q, de Sèze J, Moreau T, El-Ayeb M, Lizard G. Evidence of K+ homeostasis disruption in cellular dysfunction triggered by 7-ketocholesterol, 24S-hydroxycholesterol, and tetracosanoic acid (C24:0) in 158N murine oligodendrocytes. Chem Phys Lipids 2017; 207:135-150. [DOI: 10.1016/j.chemphyslip.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
|
33
|
Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke. J Neurosci 2017; 37:5648-5658. [PMID: 28483976 DOI: 10.1523/jneurosci.3811-16.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 has been intimately linked with neuronal apoptosis. After ischemic, oxidative, or inflammatory insults, Kv2.1 mediates a pronounced, delayed enhancement of K+ efflux, generating an optimal intracellular environment for caspase and nuclease activity, key components of programmed cell death. This apoptosis-enabling mechanism is initiated via Zn2+-dependent dual phosphorylation of Kv2.1, increasing the interaction between the channel's intracellular C-terminus domain and the SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) protein syntaxin 1A. Subsequently, an upregulation of de novo channel insertion into the plasma membrane leads to the critical enhancement of K+ efflux in damaged neurons. Here, we investigated whether a strategy designed to interfere with the cell death-facilitating properties of Kv2.1, specifically its interaction with syntaxin 1A, could lead to neuroprotection following ischemic injury in vivo The minimal syntaxin 1A-binding sequence of Kv2.1 C terminus (C1aB) was first identified via a far-Western peptide screen and used to create a protherapeutic product by conjugating C1aB to a cell-penetrating domain. The resulting peptide (TAT-C1aB) suppressed enhanced whole-cell K+ currents produced by a mutated form of Kv2.1 mimicking apoptosis in a mammalian expression system, and protected cortical neurons from slow excitotoxic injury in vitro, without influencing NMDA-induced intracellular calcium responses. Importantly, intraperitoneal administration of TAT-C1aB in mice following transient middle cerebral artery occlusion significantly reduced ischemic stroke damage and improved neurological outcome. These results provide strong evidence that targeting the proapoptotic function of Kv2.1 is an effective and highly promising neuroprotective strategy.SIGNIFICANCE STATEMENT Kv2.1 is a critical regulator of apoptosis in central neurons. It has not been determined, however, whether the cell death-enabling function of this K+ channel can be selectively targeted to improve neuronal survival following injury in vivo The experiments presented here demonstrate that the cell death-specific role of Kv2.1 can be uniquely modulated to provide neuroprotection in an animal model of acute ischemic stroke. We thus reveal a novel therapeutic strategy for neurological disorders that are accompanied by Kv2.1-facilitated forms of cell death.
Collapse
|
34
|
Banerjee A, Khemka VK, Roy D, Dhar A, Sinha Roy TK, Biswas A, Mukhopadhyay B, Chakrabarti S. Role of Pro-Inflammatory Cytokines and Vitamin D in Probable Alzheimer's Disease with Depression. Aging Dis 2017; 8:267-276. [PMID: 28580183 PMCID: PMC5440107 DOI: 10.14336/ad.2016.1017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Symptoms of depression are present in a significant proportion of Alzheimer's disease (AD) patients. While epidemiological studies have shown a strong association between depression and AD, it has not been established whether depression is a risk factor or merely a co-morbidity of AD. It is also uncertain if depression affects the pathogenesis of AD. In this paper, we address these questions by measuring the serum levels of two common metabolic risk factors of AD and depression, inflammatory cytokines (IL 6 and TNF alpha) and serum 25-hydroxyvitamin D, in a case-control study. We measured the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in age-matched healthy controls (n= 60) and in AD patients without depression (n=26) or AD patients with depression (n=34), and statistically analyzed the changes in these parameters among different groups under this study. Our results show that in AD there is a significant increase in IL 6 and TNF α and a marked decrease in 25-hydroxyvitamin D in the peripheral circulation compared to age-matched healthy controls. Furthermore, AD patients with depression have even significantly higher levels of IL 6 or TNF α and a lower level of 25-hydroxyvitamin D in circulation than in AD patients without depression. We also found a strong statistical correlation between the disease severity and the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in AD patients with depression. These results suggest that altered circulating levels of common metabolic risk factors lead to the co-existence of depression with AD in many patients, and when they co-exist, the depression presumably affects the severity of AD presentations through more aggravated changes in these risk factors.
Collapse
Affiliation(s)
- Anindita Banerjee
- 1Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India.,2Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Vineet Kumar Khemka
- 1Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India.,2Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debashree Roy
- 2Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aparajita Dhar
- 2Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Tapan Kumar Sinha Roy
- 2Department of Biochemistry, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Atanu Biswas
- 3Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Barun Mukhopadhyay
- 4Biological Anthropology Unit, Indian Statistical Institute, Kolkata, India
| | - Sasanka Chakrabarti
- 1Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India
| |
Collapse
|
35
|
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity. J Exp Neurosci 2016; 10:23-48. [PMID: 27625575 PMCID: PMC5012454 DOI: 10.4137/jen.s39887] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022] Open
Abstract
In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.
Collapse
Affiliation(s)
- Thiago Fernando Beckhauser
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - José Francis-Oliveira
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| | - Roberto De Pasquale
- Physiology and Biophysics Department, Biomedical Sciences Institute, Sao Paulo University (USP), Butanta, Sao Paulo, Brazil
| |
Collapse
|
36
|
Chakrabarti S, Mohanakumar KP. Aging and Neurodegeneration: A Tangle of Models and Mechanisms. Aging Dis 2016; 7:111-3. [PMID: 27114843 PMCID: PMC4809602 DOI: 10.14336/ad.2016.0312] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 12/19/2022] Open
Abstract
The research on aging and age-related diseases, especially the neurodegenerative diseases, is on the fast track. However, the results have so far not been translated to actual benefit for the patients in terms of treatment or diagnosis of age-related degenerative diseases including those of the CNS. As far as the prevention of the cognitive decline during non-pathological aging is concerned, there is nothing much to offer other than calorie restriction and physical exercise. Needless to say, the benefits are not up to our expectations. However, over the years at the experimental level it has been possible to identify several cellular and molecular mechanisms that are intricately associated with aging in general and neurodegenerative diseases in particular. These include oxidative stress and altered redox-signaling, mitochondrial dysfunction, inflammation, proteotoxicity and altered gene expressions. These inter-dependent pathways mediate cellular senescence and often culminate in programmed cell death like apoptosis and autophagy, and in the context of brain these changes are manifested clinically as cognitive decline and pathologically as neurodegeneration. This special issue provides the readers with glimpses of this complex scenario from different angles primarily in the context of brain and also attempts to identify the potential drug targets against neurodegenerative diseases.
Collapse
Affiliation(s)
- Sasanka Chakrabarti
- ICARE Institute of Medical Sciences and Research, Haldia, West Bengal, India
| | - Kochupurackal P Mohanakumar
- Inter University Centre for Biomedical Research & Super Speciality Hospital, Mahatma Gandhi University Campus at Thalappady, Kottayam, Kerala, India
| |
Collapse
|