1
|
Song Y, Xing X, Xiao Y, Luo Q, Gu B, Cheng Y, Zhao Y, Liu W, Liu D, Wang Z. Liposome-loaded miR-34c-5p attenuates apoptosis and oxidative stress following hypoxia-ischemia brain damage in neonatal mice by targeting Arhgap26. Eur J Pharmacol 2025; 998:177471. [PMID: 40089259 DOI: 10.1016/j.ejphar.2025.177471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Neonatal hypoxia-ischemia (HI) brain injury is considered a major cause of neonatal mortality and chronic disease morbidity worldwide. Despite its clinical importance, therapeutic options for HI injury remain limited. Here we demonstrated that miR-34c-5p expression peaks at postnatal day 10 in mice. Meanwhile, the miR-34c-5p levels in the lesioned cortex decreased following HI insult in neonatal mice. miR-34c-5p overexpression confers neuroprotective effects by attenuating brain injury and ROS production. These protective mechanisms were mediated through the inhibition of caspase 3 activation, suppression of microglial activation, and downregulation of pro-inflammatory cytokines in the injured cortex. In contrast, miR-34c-5p downregulation markedly aggravated the infarct area after HI injury. Additionally, miR-34c-5p overexpression improved short-term motor coordination and long-term neurological outcomes, including locomotor activity, learning, and memory functions, which were associated with upregulated synaptic protein expression. Importantly, we developed a non-invasive intranasal delivery system using liposome-encapsulated miR-34c-5p mimics, which significantly ameliorated brain injury at 3 days post-HI. Mechanistic studies revealed that miR-34c-5p directly targets the 3' untranslated region of GTPase activating protein 26 (Arhgap26). In conclusion, we identified a non-invasive method for successfully delivering miR-34c-5p to improve functional recovery after HI insult by targeting Arhgap26.
Collapse
Affiliation(s)
- Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaohui Xing
- Department of Neurosurgery, Liaocheng Neuroscience Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng Neuroscience Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yahong Cheng
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Weiyang Liu
- Jinan Xicheng Experimental High School, Dezhou Road 1999, Jinan, Shandong, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
2
|
Akhtar W, Muazzam Khan M, Kumar S, Ahmad U, Husen A, Avirmed S. Pathophysiology of cerebral ischemia-reperfusion injury: An overview of oxidative stress and plant-based therapeutic approaches. Brain Res 2025; 1847:149308. [PMID: 39491664 DOI: 10.1016/j.brainres.2024.149308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Stroke is a debilitating neurological disorder that causes substantial morbidity and mortality on a global scale. Ischemic stroke, the most common type, occurs when the brain's blood supply is interrupted. Oxidative stress is a key factor in stroke pathology, contributing to inflammation and neuronal cell death. As a result, there is increasing interest in the potential of plant extracts, which have been used in traditional medicine for centuries and are generally considered safe, to serve as alternative or complementary treatments for stroke. The plant extracts can target multiple pathological processes, including oxidative stress, offering neuroprotective effects. The development of highly efficient, low-toxicity, and cost-effective natural products is crucial for enhancing stroke treatment options. In this review, we examine 60 plant extracts that have been focused on the studies published from year 2000 to 2024 along with the studies' experimental models, dosages, and results. The plant extracts hold promise in modulating cerebral ischemia-reperfusion injury through counteraction of relevant pathophysiologic processes such as oxidative stress.
Collapse
Affiliation(s)
- Wasim Akhtar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Mohd Muazzam Khan
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India.
| | - Sanjay Kumar
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow 226020, Uttar Pradesh, India
| | - Ali Husen
- Hygia Institute of Pharmacy, Lucknow 226013, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
4
|
Xie X, Liu J. Ku70 silencing aggravates oxygen-glucose deprivation/reperfusion-induced injury by activation of the p53 apoptotic pathway in rat cortical astrocytes. Histochem Cell Biol 2024; 163:20. [PMID: 39715938 DOI: 10.1007/s00418-024-02352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Oxidative stress-induced DNA damage is an important mechanism that leads to the death of neuronal cells after ischemic stroke. Our previous study found that Ku70 was highly expressed in ischemic brain tissue of rats after cerebral ischemia-reperfusion injury. However, the role of Ku70 in glucose-oxygen deprivation/reperfusion (OGD/R) in astrocytes has not been reported. Therefore, we investigated the effect and mechanism of Ku70 on OGD/R-induced astrocyte injury in rats. Rat astrocytes were cultured in vitro to establish the OGD/R-induced injury model and transfected with small interfering RNA (siRNA) to disturb Ku70 expression. Real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunofluorescence were performed to assay the expression of mRNA and proteins. Cell viability, apoptosis, and ROS accumulation were determined by CCK-8 assay, flow cytometry, and fluorescence microscopy, respectively. Our results showed Ku70 can be expressed in both the nucleus and cytoplasm of astrocytes, although mainly in the nucleus. Ku70 expression showed a trend of first increasing and then decreasing after OGD/R, reaching its highest change at 24 h of reoxygenation. OGD/R induced ROS production and DNA damage in rat astrocytes, and Ku70 silencing further increased ROS production and DNA lesions, which aggravated astrocyte injury and apoptosis. Furthermore, the expression of p53, Bax, and caspase 3 proteins significantly increased after OGD/R in astrocytes, and downregulation of Ku70 further enhanced expression of the above proteins. These results indicate that Ku70 silencing promotes OGD/R-induced astrocyte apoptosis, which may be associated with p53 apoptotic pathway activation. Our study suggests that Ku70 may be a novel target for cerebral ischemia-reperfusion injury therapy.
Collapse
Affiliation(s)
- Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
5
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
6
|
Yan H, Yin Y, Zhou Y, Li Z, Li Y, Ren L, Wen J, Wang W. Regulation of cardiovascular diseases by histone deacetylases and NADPH oxidases. Redox Biol 2024; 77:103379. [PMID: 39378612 PMCID: PMC11491726 DOI: 10.1016/j.redox.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Histone deacetylases (HDACs) play critical roles in cardiovascular diseases (CVDs). In addition, reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) exert damaging effects due to oxidative stress on heart and blood vessels. Although NOX-dependent ROS production is implicated in pathogenesis, the relationship between HDACs and NOXs in CVDs remains to be elucidated. Here, we present an overview of the regulatory effects and interconnected signaling pathways of HDACs and NOXs in CVDs. Improved insights into these relationships will facilitate the discovery of novel therapeutic agents that target HDACs, oxidase stress pathways, and the interactions between these systems which may be highly effective in the prevention and treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Hui Yan
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yidan Yin
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yichen Zhou
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zhanghang Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuxing Li
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lingxuan Ren
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiazheng Wen
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weirong Wang
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China; Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
7
|
Pant K, Sharma A, Menon SV, Ali H, Hassan Almalki W, Kaur M, Deorari M, Kazmi I, Mahajan S, Kalra H, Alzarea SI. Exploring ncRNAs in epilepsy: From oxidative stress regulation to therapy. Brain Res 2024; 1841:149089. [PMID: 38880410 DOI: 10.1016/j.brainres.2024.149089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Epilepsy is a prevalent neurological illness which is linked with high worldwide burdens. Oxidative stress (OS) is recognized to be among the contributors that trigger the advancement of epilepsy, affecting neuronal excitability and synaptic transmission. Various types of non-coding RNAs (ncRNAs) are known to serve vital functions in many disease mechanisms, including epilepsy. The current review sought to understand better the mechanisms through which these ncRNAs regulate epilepsy's OS-related pathways. We investigated the functions of microRNAs in controlling gene expression at the post-translatory stage and their involvement in OS and neuroinflammation. We also looked at the different regulatory roles of long ncRNAs, including molecular scaffolding, enhancer, and transcriptional activator, during OS. Circular RNAs and their capability to act as miRNA decoys and their consequential impact on epilepsy development were also explored. Our review aimed to improve the current understanding of novel therapies for epilepsy based on the role of ncRNAs in OS pathways. We also demonstrated the roles of ncRNAs in epilepsy treatment and diagnosis, explaining that these molecules play vital roles that could be used in therapy as biomarkers.
Collapse
Affiliation(s)
- Kumud Pant
- Graphic Era (Deemed to be University), Clement Town Dehradun, 248002, India; Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Aanchal Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali 140307, Punjab, India
| | - Soumya V Menon
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mahamedha Deorari
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand- 831001, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
8
|
Radhakrishnan M, Vijay V, Supraja Acharya B, Basuthakur P, Patel S, Soren K, Kumar A, Chakravarty S. Uncovering Sex-Specific Epigenetic Regulatory Mechanism Involving H3k9me2 in Neural Inflammation, Damage, and Recovery in the Internal Carotid Artery Occlusion Mouse Model. Neuromolecular Med 2024; 26:3. [PMID: 38407687 DOI: 10.1007/s12017-023-08768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 02/27/2024]
Abstract
Cerebral ischemic stroke is one of the foremost global causes of death and disability. Due to inadequate knowledge in its sequential disease mechanisms, therapeutic efforts to mitigate acute ischemia-induced brain injury are limited. Recent studies have implicated epigenetic mechanisms, mostly histone lysine acetylation/deacetylation, in ischemia-induced neural damage and death. However, the role of lysine methylation/demethylation, another prevalent epigenetic mechanism in cerebral ischemia has not undergone comprehensive investigation, except a few recent reports, including those from our research cohort. Considering the impact of sex on post-stroke outcomes, we studied both male and female mice to elucidate molecular details using our recently developed Internal Carotid Artery Occlusion (ICAO) model, which induces mild to moderate cerebral ischemia, primarily affecting the striatum and ventral hippocampus. Here, we demonstrate for the first time that female mice exhibit faster recovery than male mice following ICAO, evaluated through neurological deficit score and motor coordination assessment. Furthermore, our investigation unveiled that dysregulated histone lysine demethylases (KDMs), particularly kdm4b/jmjd2b are responsible for the sex-specific variance in the modulation of inflammatory genes. Building upon our prior reportage blocking KDMs by DMOG (Dimethyloxalylglycine) and thus preventing the attenuation in H3k9me2 reduced the post-ICAO transcript levels of the inflammatory molecules and neural damage, our present study delved into investigating the differential role of H3k9me2 in the regulation of pro-inflammatory genes in female vis-à-vis male mice underlying ICAO-induced neural damage and recovery. Overall, our results reveal the important role of epigenetic mark H3k9me2 in mediating sex-specific sequential events in inflammatory response, elicited post-ICAO.
Collapse
Affiliation(s)
- Mydhili Radhakrishnan
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vincy Vijay
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - B Supraja Acharya
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Papia Basuthakur
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shashikant Patel
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalyani Soren
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arvind Kumar
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Sumana Chakravarty
- Applied Biology, CSIR- Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Wu H, Lv P, Wang J, Bennett B, Wang J, Li P, Peng Y, Hu G, Lin J. Genetic screen identified PRMT5 as a neuroprotection target against cerebral ischemia. eLife 2024; 12:RP89754. [PMID: 38372724 PMCID: PMC10942588 DOI: 10.7554/elife.89754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Epigenetic regulators present novel opportunities for both ischemic stroke research and therapeutic interventions. While previous work has implicated that they may provide neuroprotection by potentially influencing coordinated sets of genes and pathways, most of them remain largely uncharacterized in ischemic conditions. In this study, we used the oxygen-glucose deprivation (OGD) model in the immortalized mouse hippocampal neuronal cell line HT-22 and carried out an RNAi screen on epigenetic regulators. PRMT5 was identified as a novel negative regulator of neuronal cell survival after OGD, which presented a phenotype of translocation from the cytosol to the nucleus upon oxygen and energy depletion both in vitro and in vivo. PRMT5 bound to the chromatin and a large number of promoter regions to repress downstream gene expression. Silencing Prmt5 significantly dampened the OGD-induced changes for a large-scale of genes, and gene ontology analysis showed that PRMT5-target genes were highly enriched for Hedgehog signaling. Encouraged by the above observation, mice were treated with middle cerebral artery occlusion with the PRMT5 inhibitor EPZ015666 and found that PRMT5 inhibition sustains protection against neuronal death in vivo. Together, these findings revealed a novel epigenetic mechanism of PRMT5 in cerebral ischemia and uncovered a potential target for neuroprotection.
Collapse
Affiliation(s)
- Haoyang Wu
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Peiyuan Lv
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Jinyu Wang
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health SciencesDurhamUnited States
| | - Jiajia Wang
- Computer Network Information Center, Chinese Academy of SciencesBeijingChina
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural UniversityChangshaChina
| | - Yi Peng
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health SciencesDurhamUnited States
| | - Jiaji Lin
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical UniversityXi'anChina
- Basic Medical School, Air Force Medical UniversityXi'anChina
| |
Collapse
|
10
|
Song C, Liao L, Bin Y, He Z, Hua J, Zhao S, Liang H. Visualization diagnosis of acute cerebral ischemia via sulfane sulfur-activated photoacoustic imaging. Chem Commun (Camb) 2024; 60:1112-1115. [PMID: 38180482 DOI: 10.1039/d3cc05794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoacoustic (PA) imaging probe, HCy-SH, was designed and synthesized. This probe can react rapidly and specifically with sulfane sulfur to produce a strong PA signal. This probe also exhibited low cytotoxicity and biotoxicity. Thus, HCy-SH has been used for visual diagnosis of acute cerebral ischemia.
Collapse
Affiliation(s)
- Cheng Song
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Lejuan Liao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Yidong Bin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Zongyi He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
11
|
Liu Y, Zhang C, Cheng L, Wang H, Lu M, Xu H. Enhancing both oral bioavailability and anti-ischemic stroke efficacy of ginkgolide B by preparing nanocrystals self-stabilized Pickering nano-emulsion. Eur J Pharm Sci 2024; 192:106620. [PMID: 37871688 DOI: 10.1016/j.ejps.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Ginkgolide B (GB), which has been demonstrated as the most efficacious naturally occurring platelet-activating factor (PAF) antagonist, is extensively utilized for the management of cardiovascular and cerebrovascular ailments. Nevertheless, its limited oral bioavailability is hindered by its low solubility in gastric acid and inadequate stability in intestinal fluid, thereby constraining its practical application. This study aimed to develop GB nanocrystals (GB-NCs) and GB nanocrystals self-stabilized Pickering nano-emulsion (GB-NSSPNE) using a miniaturized wet bead milling method. Comparative evaluations were conducted in vivo and in vitro to assess their effectiveness. The findings revealed that GB-NSSPNE, with its intact nanoparticle slow release and absorption, was more effective in enhancing the oral bioavailability of GB compared to the rapid release and absorption of GB-NCs. This finding suggests a potential novel strategy for the oral delivery of GB.
Collapse
Affiliation(s)
- Yun Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China
| | - Chungang Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China; Department of Pharmacy, Changzhi Medical College, Changzhi, China; Key Laboratory of Ministry of Education, Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China; Qimeng Co., LTD, Chifeng, China
| | - Lan Cheng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, No. 77, Life One Road DD port, Dalian 116600, China.
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hengyu Xu
- Medical Mass Spectrometry Technology Innovation Center of Liaoning Province, Shenyang Harmony Health Medical Laboratory, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Azami S, Forouzanfar F. Potential role of Nigella Sativa and its Constituent (Thymoquinone) in Ischemic Stroke. Curr Mol Med 2024; 24:327-334. [PMID: 37038292 DOI: 10.2174/1566524023666230410101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
Ischemic stroke is one of the major causes of global mortality, which puts great demands on health systems and social welfare. Ischemic stroke is a complex pathological process involving a series of mechanisms such as ROS accumulation, Ca2+ overload, inflammation, and apoptosis. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients has led scientists to find new treatments. The use of herbal medicine, as an alternative or complementary therapy, is increasing worldwide. For centuries, our ancestors had known the remedial nature of Nigella sativa (Family Ranunculaceae) and used it in various ways, either as medicine or as food. Nowadays, N. sativa is generally utilized as a therapeutic plant all over the world. Most of the therapeutic properties of this plant are attributed to the presence of thymoquinone which is the major biological component of the essential oil. The present review describes the pharmacotherapeutic potential of N. sativa in ischemic stroke that has been carried out by various researchers. Existing literature highlights the protective effects of N. sativa as well as thymoquinone in ischemia stroke via different mechanisms including anti-oxidative stress, anti-inflammation, anti-apoptosis, neuroprotective, and vascular protective effects. These properties make N. sativa and thymoquinone promising candidates for developing potential agents for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shakiba Azami
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Schiano C, Luongo L, Maione S, Napoli C. Mediator complex in neurological disease. Life Sci 2023; 329:121986. [PMID: 37516429 DOI: 10.1016/j.lfs.2023.121986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy.
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Italy; Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine, and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Universitaria Policlinico (AOU), Italy
| |
Collapse
|
14
|
Sluijter ME, Teixeira A, Vissers K, Brasil LJ, van Duijn B. The Anti-Inflammatory Action of Pulsed Radiofrequency-A Hypothesis and Potential Applications. Med Sci (Basel) 2023; 11:58. [PMID: 37755161 PMCID: PMC10536902 DOI: 10.3390/medsci11030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
In 2013, it was reported that pulsed radiofrequency (PRF) could be applied to obtain a systemic anti-inflammatory effect. Patients with chronic pain and patients with an inflammatory condition from other disciplines could potentially profit from this finding. At that time, intravenous application was used, but since then, it became clear that it could be applied transcutaneously as well. This procedure was named RedoxPRF. This can be used both for regional and for systemic application. Recently, the basic element of the mode of action has been clarified from the analysis of the effects of PRF on a standard model of muscle injury in rats. The objective of this paper is to present a hypothesis on the mode of action of RedoxPRF now that the basic mechanism has become known. Cell stress causes an increased production of free radicals, disturbing the redox equilibrium, causing oxidative stress (OS) either directly or secondarily by other types of stress. Eventually, OS causes inflammation and an increased sympathetic (nervous) system activity. In the acute form, this leads to immune paralysis; in the chronic form, to immune tolerance and chronic inflammation. It is hypothesized that RedoxPRF causes a reduction of free radicals by a recombination of radical pairs. For systemic application, the target cells are the intravascular immune cells that pass through an activated area as on an assembly line. Hypothesis conclusions: 1. RedoxPRF treatment works selectively on OS. It has the unique position of having a point of engagement at the most upstream level of the train of events. 2. RedoxPRF has the potential of being a useful tool in the treatment of inflammatory diseases and possibly of stage 4 cancer. 3. In the treatment of chronic pain, RedoxPRF is an entirely new method because it is different from ablation as well as from stimulation. We propose the term "functional restoration". 4. Controlled studies must be conducted to develop this promising new field in medicine further.
Collapse
Affiliation(s)
- Menno E. Sluijter
- Pain Medicine Center, Swiss Paraplegic Center, Guido A. Zäch-Strasse 1, 6207 Nottwil, Switzerland
| | | | - Kris Vissers
- Department of Anesthesiology and Palliative Care, Radboud Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Luis Josino Brasil
- Department of Anesthesiology and Pain Medicine, University of Porto Alegre, Porto Alegre 90050-170, Brazil;
| | - Bert van Duijn
- PBDL, Institute Biology, Leiden University and Fytagoras BV, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Science Department, University College Roosevelt, P.O. Box 94, 4330 AB Middelburg, The Netherlands
| |
Collapse
|
15
|
Jin T, Leng B. Cynaropicrin Averts the Oxidative Stress and Neuroinflammation in Ischemic/Reperfusion Injury Through the Modulation of NF-kB. Appl Biochem Biotechnol 2023; 195:5424-5438. [PMID: 35838888 PMCID: PMC10457408 DOI: 10.1007/s12010-022-04060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Cerebral ischemia and successive reperfusion are the prevailing cause of cerebral stroke. Currently cerebral stroke is considered to be one of the prior causes for high mortality, disability, and morbidity. Cynaropicrin, a sesquiterpene lactone, exhibits various pharmacologic properties and also has an anti-inflammatory property associated with the suppression of the key pro-inflammatory NF-κB pathway. The protective effect of cynaropicrin against oxidative stress and neuroinflammation during CIR injury through the modulation of NF-κB pathway was studied in the current investigation. The experimental rats split into 5 groups as sham-operated control group (group 1), middle cerebral artery occlusion (MCAO)-induced rats (group 2), MCAO rats treated with cynaropicrin (diluted in saline) immediately 2 h after MCAO with 5, 10, and 25 mg/kg administration orally were designated as groups 3, 4, and 5, respectively. In MCAO-induced animals, the severity of ischemic was evident by the elevated level nitrate, MDA, MMPs, inflammatory mediators, Bax, caspase-3, and NF-κB. The level of Nrf-2, antioxidant enzymes, Bcl-2, and IL-10 was reduced in the MCAO-induced animals. Treatment with cynaropicrin in dosage-based manner increased the level of antioxidant enzymes, IL-10, Nrf-2, and Bcl-2 in the animals which indicates the antioxidative effect of cynaropicrin. The level of nitrate, MDA, MMPs, proinflammatory cytokines, inflammatory mediators, Bax, caspase-3, and NF-κB was reduced in the rats treated with cynaropicrin in a dosage-based manner. Experimental animals treated with cynaropicrin in a dosage-dependent way showed a defensive mechanism against oxidative stress and neuroinflammation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Tao Jin
- Department of Interventional and Vascular Surgery, Affiliated Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bing Leng
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
16
|
Sanamiri K, Soleimani Mehranjani M, Shahhoseini M, Shariatzadeh SMA. The effect of platelet lysate on mouse ovarian structure, function and epigenetic modifications after autotransplantation. Reprod Biomed Online 2023; 46:446-459. [PMID: 36690568 DOI: 10.1016/j.rbmo.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
RESEARCH QUESTION What are the effects of platelet lysate on structure, function and epigenetic modifications of heterotopically transplanted mouse ovarian tissues? DESIGN Mice were divided into three groups (n = 17 per group): control (mice with no ovariectomy, grafting or treatment), autograft and autograft plus platelet lysate (3 ml/kg at the graft sites). Inflammatory markers, serum malondialdehyde (MDA) concentration and total antioxidant capacity were assessed on day 7 after transplantation. Twenty-eight days after transplantation, stereological and hormonal analyses were conducted. Chromatin immunoprecipitation and quantitative real-time polymerase chain reaction were also used to quantify the epigenetic modifications of maturation genes, parallel to their expression. RESULTS The total volume of the ovary, cortex and medulla, and the number of different types of follicles, the concentration of interleukin (IL)-10, progesterone and oestradiol and total antioxidant capacity significantly decreased in the autograft group compared with the control group (P < 0.001); these parameters significantly increased in the autograft plus platelet lysate group compared with the autograft group (P < 0.001). The concentrations of tumour necrosis factor alpha, IL-6 and MDA increased significantly in the autograft group compared with the control group (P < 0.001); in the autograft plus platelet lysate group, these parameters significantly decreased compared with the autograft group (P < 0.001). In the autograft plus platelet lysate group, the expression levels of Gdf-9 (P < 0.0021), Igf-1 (P < 0.0048) and Igf-2 (P < 0.0063) genes also increased along with a lower incorporation of MeCP2 in the promoter regions (P < 0.001) compared with the autograft group. CONCLUSIONS Platelet lysate can contribute to follicular survival by improving folliculogenesis and increasing the expression of oocyte maturation genes.
Collapse
Affiliation(s)
- Khadijeh Sanamiri
- Department of Biology, Faculty of Science, Arak University, Arak, 381-5688138, Iran
| | | | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, 19395-4644, Iran
| | | |
Collapse
|
17
|
Antioxidative Effect of Amomum testaceum Ridl. Extract for Protecting against Vascular Dementia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:1572527. [PMID: 36618764 PMCID: PMC9815930 DOI: 10.1155/2022/1572527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Vascular dementia is caused by decreased blood flow to the brain, which leads to neuronal damage and subsequent death. Therefore, development of alternative neuroprotective agents is critical. This study is aimed at investigating the effects of Amomum testaceum Ridl. extract or Siam cardamom extract (SCE) on oxidative markers in a rat model of vascular dementia. The phenolic content of SCE, represented as gallic acid equivalent (mg/100 GAE), was discovered to be 128.56 ± 0.58 mg/100 GAE. The EC50 values for the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities of SCE were 32.48 ± 0.39 ug/mL. In addition, the reducing power of SCE, via a ferric reducing antioxidant power assay, was also determined, with an EC50 value of 142.55 ± 0.56 ug/mL. SCE was administered orally to adult male Wistar rats weighing 250-300 g at doses of 100, 300, and 500 mg/kg over the course of 14 days; then, the rats underwent surgery of the right middle cerebral artery, producing an occlusion imitating vascular dementia in a controlled environment. All rats were euthanized to obtain brain tissue for biochemical testing and analysis. The results showed that malondialdehyde decreased and superoxide dismutase, catalase, and glutathione peroxidase increased at all doses (100, 300, and 500 mg/kg) of SCE (P < 0.05). In addition, SCE was shown to lower the expression level of S100B, a marker of neurologic injury (P < 0.05). The free radical scavenging and anti-inflammatory capabilities of SCE suggest that it has the potential to be used as a food supplement to protect against oxidative damage in vascular dementia. However, further clinical investigations are essential to elucidate this in clinical trials.
Collapse
|
18
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
19
|
Peng J, Ghosh D, Zhang F, Yang L, Wu J, Pang J, Zhang L, Yin S, Jiang Y. Advancement of epigenetics in stroke. Front Neurosci 2022; 16:981726. [PMID: 36312038 PMCID: PMC9610114 DOI: 10.3389/fnins.2022.981726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/27/2022] [Indexed: 10/14/2023] Open
Abstract
A wide plethora of intervention procedures, tissue plasminogen activators, mechanical thrombectomy, and several neuroprotective drugs were reported in stroke research over the last decennium. However, against this vivid background of newly emerging pieces of evidence, there is little to no advancement in the overall functional outcomes. With the advancement of epigenetic tools and technologies associated with intervention medicine, stroke research has entered a new fertile. The stroke involves an overabundance of inflammatory responses arising in part due to the body's immune response to brain injury. Neuroinflammation contributes to significant neuronal cell death and the development of functional impairment and even death in stroke patients. Recent studies have demonstrated that epigenetics plays a key role in post-stroke conditions, leading to inflammatory responses and alteration of the microenvironment within the injured tissue. In this review, we summarize the progress of epigenetics which provides an overview of recent advancements on the emerging key role of secondary brain injury in stroke. We also discuss potential epigenetic therapies related to clinical practice.
Collapse
Affiliation(s)
- Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dipritu Ghosh
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Yang H, Chen J. Bone marrow mesenchymal stem cell-derived exosomes carrying long noncoding RNA ZFAS1 alleviate oxidative stress and inflammation in ischemic stroke by inhibiting microRNA-15a-5p. Metab Brain Dis 2022; 37:2545-2557. [PMID: 35907132 DOI: 10.1007/s11011-022-00997-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND/AIM Bone marrow mesenchymal stem cell (BMSC)-derived exosomes can prevent oxidative stress and inflammation in cerebral ischemia-reperfusion injury. This study intended to assess influences of BMSC-released exosomes on oxidative stress and inflammation following ischemic stroke. METHODS In vitro and in vivo models were developed using oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO), respectively. After exosome isolation, co-culture experiments of BMSCs or BMSC-derived exosomes and OGD/R-treated BV-2 cells were implemented to evaluate the impacts of BMSCs or BMSC-secreted exosomes on proliferation, inflammation, oxidative stress, and apoptosis. The gain-of-function experiments of ZFAS1 or microRNA (miR)-15a-5p were conducted to investigate the associated mechanisms. Besides, MCAO mice were injected with exosomes from BMSCs overexpressing ZFAS1 for in vivo verification. The binding of ZFAS1 to miR-15a-5p was assessed through dual-luciferase reporter gene assay. RESULTS Co-culture with BMSCs accelerated proliferation and downregulated IL-1β, IL-6, and TNF-α in OGD/R-exposed BV-2 cells, accompanied by increased SOD level and decreased MDA level and apoptosis, all of which were nullified by inhibiting exosome secretion. Mechanistically, ZFAS1 bound to miR-15a-5p to negatively orchestrate its expression. In addition, BMSC-released exosomes or BMSC-secreted exosomal ZFAS1 augmented proliferation but reduced oxidative stress, apoptosis, and inflammation in OGD/R-exposed BV-2 cells, whereas these impacts of BMSC-released exosomal ZFAS1 were nullified by overexpressing miR-15a-5p. Moreover, BMSC-derived exosomal ZFAS1 diminished MCAO-induced oxidative stress, cerebral infarction, and inflammation in mice. CONCLUSIONS Conclusively, BMSC-released exosomes might carry long noncoding RNA ZFAS1 to curb oxidative stress and inflammation related to ischemic stroke, which was possibly realized through miR-15a-5p inhibition.
Collapse
Affiliation(s)
- Huaitao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169, Donghu Road, Wuchang District, 430071, Wuhan, Hubei, P.R. China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, No. 169, Donghu Road, Wuchang District, 430071, Wuhan, Hubei, P.R. China.
| |
Collapse
|
21
|
Zhao XY, Zhang XL. DNA Methyltransferase Inhibitor 5-AZA-DC Regulates TGF β1-Mediated Alteration of Neuroglial Cell Functions after Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9259465. [PMID: 36211817 PMCID: PMC9534700 DOI: 10.1155/2022/9259465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
5-AZA-DC is an efficient methylation inhibitor that inhibits methylation of target DNA. In this study, we explored the effects of 5-AZA-DC on the regulation of TGFβ1 on target genes in neuroglial cell, as well as neuroglial cell functions under oxidative stress. The oxidative stress was constructed by editing CRISPR/Cas9 for knock out Ang-1 and ApoE4 genes. Cells were subjected to TGFβ1OE (or shTGFβ1) transfection and/or 5-AZA-DC intervention. Results showed that under oxidative stress, both TGFβ1OE and shTGFβ1 transfection raised DNMT1, but reduced TGFβ1, PTEN, and TSC2 expressions in neuroglial cells. TGFβ1 directly bind to the promoter of PTEN gene. 5-AZA-DC intervention lowered DNMT1 and raised TGFβ1 expression, as well as promoted the binding between TGFβ1 and promoter of PTEN. TGFβ1OE caused a significant increase in the DNA demethylation level of PTEN promoter, while 5-AZA-DC intervention reduced the DNA demethylation level of PTEN promoter. Under oxidative stress, TGFβ1OE (or shTGFβ1) transfection inhibited neuroglial cell proliferation, migration, and invasion, promoted cell apoptosis. 5-AZA-DC intervention alleviated TGFβ1OE (or shTGFβ1) transfection caused neuroglial cell proliferation, migration, and invasion inhibition, as well as cell apoptosis. To conclude, these results suggest that 5-AZA-DC can be used as a potential drug for epigenetic therapy on oxidative stress damage in neuroglial cells. The findings of this research provide theoretical basis and research ideas for methylation drug intervention and TGFβ1 gene as a possible precise target of glial oxidative stress diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao-Yong Zhao
- Department of Neurosurgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510800, China
- The Third School of Clinical Medicine Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Zhang
- The Third School of Clinical Medicine Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou 510800, China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Guangdong Province, Guangzhou, China
| |
Collapse
|
22
|
The Role of DNA Methylation in Stroke Recovery. Int J Mol Sci 2022; 23:ijms231810373. [PMID: 36142283 PMCID: PMC9499691 DOI: 10.3390/ijms231810373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.
Collapse
|
23
|
Zhang Q, Li D, Zhao H, Zhang X. Decitabine attenuates ischemic stroke by reducing astrocytes proliferation in rats. PLoS One 2022; 17:e0272482. [PMID: 35917376 PMCID: PMC9345475 DOI: 10.1371/journal.pone.0272482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation regulates epigenetic gene expression in ischemic stroke. Decitabine attenuates ischemic stroke by inhibiting DNA methylation. However, the underlying mechanism of this effect is not known. A model of ischemic stroke in Sprague-Dawley rats was induced through middle cerebral artery occlusion followed by reperfusion step. The rats were randomly treated with decitabine or vehicle by a one-time intraperitoneal injection. Sham rats received similar treatments. Four days after treatment, the rats were perfused with saline or 4% paraformaldehyde after which the brain was excised. DNA methylation level and brain infarct volume were determined by dot blot and histochemistry, respectively. The cellular co-localization and quantitative analysis of DNA methylation were assessed by immunohistochemistry and expression levels of cdkn1b (p27) mRNA and protein were measured by qRT-PCR and immunohistochemistry, respectively. The proliferation of astrocytes and number of neurons were determined by immunohistochemistry. Rats treated with decitabine showed hypomethylation and reduced infarct volume in the cortex. DNA methylation was decreased in astrocytes. Decitabine upregulated p27 mRNA and protein expression levels and attenuated the proliferation of astrocytes in vivo and vitro. Decitabine promotes p27 gene expression possibly by inhibiting its DNA methylation, thereby decreases the proliferation of astrocytes, neuronal death and infarct volume after ischemic stroke.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haihua Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
24
|
Yang L, Zhu J, Yang L, Gan Y, Hu D, Zhao J, Zhao Y. SCO-spondin-derived peptide NX210 rescues neurons from cerebral ischemia/reperfusion injury through modulating the Integrin-β1 mediated PI3K/Akt pathway. Int Immunopharmacol 2022; 111:109079. [PMID: 35930911 DOI: 10.1016/j.intimp.2022.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
Ischemic stroke is a common condition with high morbidity and mortality, causing irreversible neuronal damage and seriously affecting neurological function. There has been no ideal effective treatment so far. The NX210 peptide is derived from the thrombospondin type 1 repeat (TSR) sequence of SCO-spondin, and has been reported to exert various neurogenic properties. This study investigated whether NX210 had therapeutic effects and possible underlying mechanisms against cerebral ischemia/reperfusion (I/R). Therefore, primary embryonic rat cortical neurons and Sprague-Dawley (SD) rats that were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R) injuries, respectively, were treated with or without NX210. We found that NX210 reduced OGD/R-induced cell viability loss and cytotoxicity. NX210 decreased cerebral infarct volume and brain edema, ameliorated neurological dysfunction, attenuated oxidative stress damage, and diminished neuronal apoptosis in MCAO/R rats. Furthermore, western blot analysis shown that treatment with NX210 up-regulated the expression of Integrin-β1, phosphorylated-PI3K (p-PI3K) and phosphorylated-Akt (p-Akt). The Integrin-β1 specific inhibitor, ATN-161, was used to identify pathways involved. The anti-oxidation activities and anti-apoptosis of NX210 was reversed by treatment with ATN-161. Overall, our results indicated that NX210 prevents oxidative stress and neuronal apoptosis in cerebral I/R via upregulation of the Integrin-β1/PI3K/Akt signaling pathway. These results indicated that NX210 may be a promising therapeutic candidate for ischemic stroke.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yunhao Gan
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Di Hu
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, PR China; Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
25
|
Lv Y, Zhang C, Jian H, Lou Y, Kang Y, Deng W, Wang C, Wang W, Shang S, Hou M, Shen W, Xie J, Li X, Zhou H, Feng S. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury. Gene 2022; 837:146689. [PMID: 35750086 DOI: 10.1016/j.gene.2022.146689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an important pathophysiological condition that can cause cell injury and large-scale tissue injury in the nervous system. Previous studies have shown that epigenetic regulation may play a role in the pathogenesis of IRI. METHODS In this study, we isolated mouse cortical neurons and constructed an oxygen-glucose deprivation/reoxygenation (OGD) model to explore the change in DNA methylation and its effect on the expression of corresponding genes. RESULTS We found that DNA methylation in neurons increased with hypoxia duration and that hypermethylation of numerous promoters and 3'-untranslated regions increased. We performed Gene Ontology enrichment analysis to study gene function and Kyoto Encyclopedia of Genes and Genomes pathway analysis to identify the pathways associated with gene regulation. The results showed that hypermethylation-related genes expressed after OGD were related to physiological pathways such as neuronal projection, ion transport, growth and development, while hypomethylation-related genes were related to pathological pathways such as the external apoptosis signaling pathway, neuronal death regulation, and regulation of oxidative stress. However, the changes in DNA methylation were specific for certain genes and may have been related to OGD-induced neuronal damage. Importantly, we integrated transcription and DNA methylation data to identify several candidate target genes, including hypomethylated Apoe, Pax6, Bmp4, and Ptch1 and hypermethylated Adora2a, Crhr1, Stxbp1, and Tac1. This study further indicated the effect of DNA methylation on gene function in brain IRI from the perspective of epigenetics, and the identified genes may become new targets for achieving neuroprotection in the brain after IRI.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Chi Zhang
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Weimin Deng
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Chaoyu Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wei Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Shenghui Shang
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Jing Xie
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin 300070, P.R. China; Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin 300052, P.R. China; Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
26
|
Xu X, Zhang Y. Regulation of Oxidative Stress by Long Non-coding RNAs in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:931704. [PMID: 35782387 PMCID: PMC9241987 DOI: 10.3389/fnmol.2022.931704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, Alzheimer’s disease, Parkinson’s disease, spinal cord injury, glioma, and epilepsy, involve oxidative stress and neuronal apoptosis, often leading to long-term disability or death. Emerging studies suggest that oxidative stress may induce epigenetic modifications that contribute to CNS disorders. Non-coding RNAs are epigenetic regulators involved in CNS disorders and have attracted extensive attention. Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides long and have no protein-coding function. However, these molecules exert regulatory functions at the transcriptional, post-transcriptional, and epigenetic levels. However, the major role of lncRNAs in the pathophysiology of CNS disorders, especially related to oxidative stress, remains unclear. Here, we review the molecular functions of lncRNAs in oxidative stress and highlight lncRNAs that exert positive or negative roles in oxidation/antioxidant systems. This review provides novel insights into the therapeutic potential of lncRNAs that mediate oxidative stress in CNS disorders.
Collapse
Affiliation(s)
- Xiaoman Xu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
27
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Ma X. Preclinical Evidence of Paeoniflorin Effectiveness for the Management of Cerebral Ischemia/Reperfusion Injury: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:827770. [PMID: 35462929 PMCID: PMC9032804 DOI: 10.3389/fphar.2022.827770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Vessel recanalization is the main treatment for ischemic stroke; however, not all patients benefit from it. This lack of treatment benefit is related to the accompanying ischemia-reperfusion (I/R) injury. Therefore, neuroprotective therapy for I/R Injury needs to be further studied. Paeonia lactiflora Pall. is a commonly used for ischemic stroke management in traditional Chinese medicine; its main active ingredient is paeoniflorin (PF). We aimed to determine the PF’s effects and the underlying mechanisms in instances of cerebral I/R injury.Methods: We searched seven databases from their inception to July 2021.SYRCLE’s risk of bias tool was used to assess methodological quality. Review Manager 5.3 and STATA 12.0 software were used for meta-analysis.Results: Thirteen studies, including 282 animals overall, were selected. The meta-analyses showed compared to control treatment, PF significantly reduced neurological severity scores, cerebral infarction size, and brain water content (p = 0.000). In the PF treatment groups, the apoptosis cells and levels of inflammatory factors (IL-1β) decreased compared to those in the control groups (p = 0.000).Conclusion: Our results suggest that PF is a promising therapeutic for cerebral I/R injury management. However, to evaluate the effects and safety of PF in a more accurate manner, additional preclinical studies are necessary.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma,
| |
Collapse
|
28
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
29
|
Wu Z, Wei W, Fan H, Gu Y, Li L, Wang H. Integrated Analysis of Competitive Endogenous RNA Networks in Acute Ischemic Stroke. Front Genet 2022; 13:833545. [PMID: 35401659 PMCID: PMC8990852 DOI: 10.3389/fgene.2022.833545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Acute ischemic stroke (AIS) is a severe neurological disease with complex pathophysiology, resulting in the disability and death. The goal of this study is to explore the underlying molecular mechanisms of AIS and search for new potential biomarkers and therapeutic targets. Methods: Integrative analysis of mRNA and miRNA profiles downloaded from Gene Expression Omnibus (GEO) was performed. We explored differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMirs) after AIS. Target mRNAs of DEMirs and target miRNAs of DEGs were predicted with target prediction tools, and the intersections between DEGs and target genes were determined. Subsequently, Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses, Gene set enrichment analysis (GSEA), Gene set variation analysis (GSVA), competitive endogenous RNA (ceRNA) (lncRNA-miRNA-mRNA) network, protein–protein interaction (PPI) network, and gene transcription factors (TFs) network analyses were performed to identify hub genes and associated pathways. Furthermore, we obtained AIS samples with evaluation of immune cell infiltration and used CIBERSORT to determine the relationship between the expression of hub genes and infiltrating immune cells. Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the effect of the identified targets on drug sensitivity. Result: We identified 293 DEGs and 26 DEMirs associated with AIS. DEGs were found to be mainly enriched in inflammation and immune-related signaling pathways through enrichment analysis. The ceRNA network included nine lncRNAs, 13 miRNAs, and 21 mRNAs. We used the criterion AUC >0.8, to screen a 3-gene signature (FBL, RPS3, and RPS15) and the aberrantly expressed miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-148b-3p, and hsa-miR-143-3p) in AIS, which were verified by a method of quantitative PCR (qPCR) in HT22 cells. T cells CD8, B cells naïve, and activated NK cells had statistical increased in number compared with the acute cerebral infarction group. By predicting the IC50 of the patient to the drug, AZD0530, Z.LLNle.CHO and NSC-87877 with significant differences between the groups were screened out. AIS demonstrated heterogeneity in immune infiltrates that correlated with the occurrence and development of diseases. Conclusion: These findings may contribute to a better understanding of the molecular mechanisms of AIS and provide the basis for the development of novel treatment targets in AIS.
Collapse
Affiliation(s)
- Zongkai Wu
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Wanyi Wei
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hongzhen Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yongsheng Gu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Litao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hebo Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Hebo Wang, , https://orcid.org/0000-0002-0598-5772
| |
Collapse
|
30
|
Pan X, Fan J, Peng F, Xiao L, Yang Z. SET domain containing 7 promotes oxygen-glucose deprivation/reoxygenation-induced PC12 cell inflammation and oxidative stress by regulating Keap1/Nrf2/ARE and NF-κB pathways. Bioengineered 2022; 13:7253-7261. [PMID: 35259059 PMCID: PMC8974222 DOI: 10.1080/21655979.2022.2045830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and inflammation are implicated in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. SETD7 (SET Domain Containing 7) functions as a histone lysine methyltransferase, participates in cardiac lineage commitment, and silence of SETD7 exerts anti-inflammatory or antioxidant capacities. The effect of SETD7 in in vitro cell model of cerebral I/R injury was investigated in this study. Firstly, adrenal pheochromocytoma cell (PC12) was conducted with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish cell model of cerebral I/R injury. OGD/R-enhanced SETD7 expression in PC12 cells. Cell viability of OGD/R-induced PC12 was reduced, while the apoptosis was promoted. Secondly, knockdown of SETD7 reversed the effect of OGD/R on cell viability and apoptosis of PC12. Moreover, OGD/R-induced inflammation in PC12 with decreased interleukin (IL)-10, increased IL-6, IL-1β, tumor necrosis factor-α (TNF-α), and cyclooxygenase 2 (COX-2) were restored by knockdown of SETD7. Thirdly, knockdown of SETD7 attenuated OGD/R-induced decrease of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), as well as increase of malondialdehyde (MDA) and reactive oxygen species (ROS) in PC12. Lastly, OGD/R-induced decrease of NF-κB inhibitor α (IκBα), increase of phosphorylated (p)-p65, p-IκBα, and Keap1 (Kelch-like ECH-associated protein 1) were reversed by silence of SETD7. Silence of SETD7 increased heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) expression in OGD/R-induced PC12. In conclusion, suppression of SETD7 ameliorated OGD/R-induced inflammation and oxidative stress in PC12 cell through inactivation of NF-κB and activation of Keap1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xianfang Pan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Jin Fan
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Fang Peng
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Li Xiao
- Department of Neurology, Chengdu Shuangliu First People's Hospital, Chengdu, Sichuan Province, China
| | - Zhiyi Yang
- Department of Neurology, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
31
|
Pluta R, Kiś J, Januszewski S, Jabłoński M, Czuczwar SJ. Cross-Talk between Amyloid, Tau Protein and Free Radicals in Post-Ischemic Brain Neurodegeneration in the Form of Alzheimer’s Disease Proteinopathy. Antioxidants (Basel) 2022; 11:antiox11010146. [PMID: 35052650 PMCID: PMC8772936 DOI: 10.3390/antiox11010146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 02/04/2023] Open
Abstract
Recent years have seen remarkable progress in research into free radicals oxidative stress, particularly in the context of post-ischemic recirculation brain injury. Oxidative stress in post-ischemic tissues violates the integrity of the genome, causing DNA damage, death of neuronal, glial and vascular cells, and impaired neurological outcome after brain ischemia. Indeed, it is now known that DNA damage and repair play a key role in post-stroke white and gray matter remodeling, and restoring the integrity of the blood-brain barrier. This review will present one of the newly characterized mechanisms that emerged with genomic and proteomic development that led to brain ischemia to a new level of post-ischemic neuropathological mechanisms, such as the presence of amyloid plaques and the development of neurofibrillary tangles, which further exacerbate oxidative stress. Finally, we hypothesize that modified amyloid and the tau protein, along with the oxidative stress generated, are new key elements in the vicious circle important in the development of post-ischemic neurodegeneration in a type of Alzheimer’s disease proteinopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-608-6540
| | - Jacek Kiś
- Department of Urology, 1st Military Clinical Hospital with the Outpatient Clinic, Al. Racławickie 23, 20-049 Lublin, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 Str., 02-106 Warsaw, Poland;
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Jaczewskiego 8 Str., 20-090 Lublin, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland;
| |
Collapse
|
32
|
Jang JP, Kwon MC, Nogawa T, Takahashi S, Osada H, Ahn JS, Ko SK, Jang JH. Thiolactomide: A New Homocysteine Thiolactone Derivative from Streptomyces sp. with Neuroprotective Activity. J Microbiol Biotechnol 2021; 31:1667-1671. [PMID: 34528916 PMCID: PMC9706031 DOI: 10.4014/jmb.2108.08015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
A new homocysteine thiolactone derivative, thiolactomide (1), was isolated along with a known compound, N-acetyl homocysteine thiolactone (2), from a culture extract of soil-derived Streptomyces sp. RK88-1441. The structures of these compounds were elucidated by detailed NMR and MS spectroscopic analyses with literature study. In addition, biological evaluation studies revealed that compounds 1 and 2 both exert neuroprotective activity against 6-hydroxydopamine (6-OHDA)-mediated neurotoxicity by blocking the generation of hydrogen peroxide in neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Min Cheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Toshihiko Nogawa
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- Natural Products Biosynthesis Research Unit and RIKEN-KRIBB Joint Research Unit, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,
J.S. Ahn Phone: +82-43-240-6160 Fax: +82-43-240-6169 E-mail:
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,
S.K. Ko Phone: +82-43-240-6146 Fax: +82-43-240-6169 E-mail:
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea,Corresponding authors J.H. Jang Phone: +82-43-240-6164 Fax: +82-43-240-6169 E-mail:
| |
Collapse
|
33
|
Maksimova MY, Ivanov AV, Nikiforova KA, Virus ED, Suanova ET, Ochtova FR, Piradov MA, Kubatiev AA. Plasma low molecular weight aminothiols in ischemic stroke patients with type 2 diabetes mellitus. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was found that ischemic stroke (IS) results in decreased levels of a number of reduced forms of low molecular weight aminothiols (LMWTs). The study was aimed to assess the impact of type 2 diabetes mellitus (Т2D) on the total content, reduced forms and redox status of LMWTs in patients with IS. A total of 175 patients with IS in the internal carotid artery basin (the average age was 62 (55–69)) years) were assessed, who were admitted to the Center within the first 10–24 h since the onset of neurological disorder. The index group included 68 patients with IS and T2D (males made up 41.2%). The comparison group consisted of 107 patients with IS and stress hyperglycemia (males made up 57%), and the control group included 31 non-diabetic patients with chronic cerebrovascular disease (CCVD) (males made up 54.8%). The admission plasma levels of LMWTs were assessed by liquid chromatography in all patients. It was found, that IS in patients with T2D was associated with the rapid decrease in total cysteine (tCys), total glutathione (tGSH), total homocysteine (tHcy), reduced glutathione (rGSH), and glutathione redox status (GSH RS), along with the increase in cysteine redox status (Cys RS) and homocysteine redox status (Hcy RS). In contrast to patients with stress hyperglycemia developing during the acute period of IS, patients with T2D had lower tCys, tGSH, and tHcy levels. Thus, GSH RS of 4.06% or lower in the first 24 hours after the IS in patients with T2D was a predictor of poor functional outcome (mRS score was 3 or more 3 weeks after IS).
Collapse
Affiliation(s)
| | - AV Ivanov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - KA Nikiforova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - ED Virus
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - ET Suanova
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - FR Ochtova
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - MA Piradov
- Research Center of Neurology, Moscow, Russia
| | - AA Kubatiev
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
34
|
Yang L, Wang L, Wang J, Liu P. Long non-coding RNA Gm11974 aggravates oxygen-glucose deprivation-induced injury via miR-122-5p/SEMA3A axis in ischaemic stroke. Metab Brain Dis 2021; 36:2059-2069. [PMID: 34338972 DOI: 10.1007/s11011-021-00792-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in ischaemic stroke. This study aimed to investigate the role and potential mechanism of lncRNA Gm11974 in ischaemic stroke. Mouse neuroblastoma N2a cells were treated with oxygen-glucose deprivation (OGD). The levels of Gm11974, microRNA-122-5p (miR-122-5p) and semaphorin 3A (SEMA3A) were detected by quantitative real-time PCR (qRT-PCR) or western blot. Cell viability and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, Caspase-3 Assay Kit and flow Cytometry. The levels of oxidative stress indicators were measured by using commercial kits. The relationship between miR-122-5p and Gm11974 or SEMA3A was verified by dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Middle cerebral artery occlusion (MCAO) in mice was used to mimic ischaemic stroke. Gm11974 and SEMA3A were up-regulated, while miR-122-5p was down-regulated in OGD-treated N2a cells and MCAO mice. Down-regulation of Gm11974 ameliorated OGD-mediated N2a cell damage by increasing cell viability and reducing cell apoptosis and oxidative stress. Gm11974 promoted OGD-induced injury in N2a cells via negatively regulating miR-122-5p. Also, miR-122-5p alleviated OGD-resulted N2a cell injury by targeting SEMA3A. Moreover, silencing of Gm11974 decreased infarct volume and neurological score in MCAO mice. Knockdown of Gm11974 attenuated neuronal injury in ischaemic stroke by regulating miR-122-5p/SEMA3A signaling pathway.
Collapse
Affiliation(s)
- Ling Yang
- Department of Neurology, Shouguang City People's Hospital, Shouguang City, 262700, Shandong, China
| | - Lijuan Wang
- Department of Neurology, Shouguang City People's Hospital, Shouguang City, 262700, Shandong, China
| | - Juan Wang
- Department of Gastroenterology, The First Hospital of Zibo City, Zibo City, 255200, Shandong, China
| | - Ping Liu
- Department of Neurology, Central Hospital of Zibo, Zibo City, 255200, Shandong, China.
- Department of Neurology, Central Hospital of Zibo, No.54 Gongqingtuan West Road, Zhangdian District, Zibo City, Shandong, 255000, People's Republic of China.
| |
Collapse
|
35
|
Restoration of HDAC1 Enzymatic Activity after Stroke Protects Neurons from Ischemia/Reperfusion Damage and Attenuates Behavioral Deficits in Rats. Int J Mol Sci 2021; 22:ijms221910654. [PMID: 34638996 PMCID: PMC8508747 DOI: 10.3390/ijms221910654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
A therapeutic approach for promoting neuroprotection and brain functional regeneration after strokes is still lacking. Histone deacetylase 1 (HDAC1), which belongs to the histone deacetylase family, is involved in the transcriptional repression of cell-cycle-modulated genes and DNA damage repair during neurodegeneration. Our previous data showed that the protein level and enzymatic activity of HDAC1 are deregulated in stroke pathogenesis. A novel compound named 5104434 exhibits efficacy to selectively activate HDAC1 enzymatic function in neurodegeneration, but its potential in stroke therapy is still unknown. In this study, we adopted an induced rat model with cerebral ischemia using the vessel dilator endothelin-1 to evaluate the potential of compound 5104434. Our results indicated compound 5104434 selectively restored HDAC1 enzymatic activity after oxygen and glucose deprivation, preserved neurite morphology, and protected neurons from ischemic damage in vitro. In addition, compound 5104434 attenuated the infarct volume, neuronal loss, apoptosis, DNA damage, and DNA breaks in cerebral ischemia rats. It further ameliorated the behavioral outcomes of neuromuscular response, balance, forepaw strength, and functional recovery. Collectively, our data support the efficacy of compound 5104434 in stroke therapy and contend that it can be considered for clinical trial evaluation.
Collapse
|
36
|
Chen JS, Wang HK, Hsu CY, Su YT, Chen JS, Liang CL, Hsieh PCH, Wu CC, Kwan AL. HDAC1 deregulation promotes neuronal loss and deficit of motor function in stroke pathogenesis. Sci Rep 2021; 11:16354. [PMID: 34381129 PMCID: PMC8357973 DOI: 10.1038/s41598-021-95837-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Stroke is a common cause of death worldwide and leads to disability and cognitive dysfunction. Ischemic stroke and hemorrhagic stroke are major categories of stroke, accounting for 68% and 32% of strokes, respectively. Each year, 15 million people experience stroke worldwide, and the stroke incidence is rising. Epigenetic modifications regulate gene transcription and play a major role in stroke. Accordingly, histone deacetylase 1 (HDAC1) participates in DNA damage repair and cell survival. However, the mechanisms underlying the role of HDAC1 in stroke pathogenesis are still controversial. Therefore, we investigated the role of HDAC1 in stroke by using a rat model of endothelin-1-induced brain ischemia. Our results revealed that HDAC1 was deregulated following stroke, and its expressional level and enzymatic activity were decreased. We also used MS-275 to inhibit HDAC1 function in rats exposed to ischemic insult. We found that HDAC1 inhibition promoted the infarct volume, neuronal loss, DNA damage, neuronal apoptosis after stroke, and levels of reactive oxygen species and inflammation cytokines. Additionally, HDAC1 inhibition deteriorated the behavioral outcomes of rats with ischemic insult. Overall, our findings demonstrate that HDAC1 participates in ischemic pathogenesis in the brain and possesses potential for use as a therapeutic target.
Collapse
Affiliation(s)
- Jui-Sheng Chen
- grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,Department of Neurosurgery, E-Da Dachang Hospital, Kaohsiung, Taiwan ,grid.414686.90000 0004 1797 2180Department of Neurosurgery, E-Da Hospital, Kaohsiung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hao-Kuang Wang
- grid.414686.90000 0004 1797 2180Department of Neurosurgery, E-Da Hospital, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Yu Hsu
- grid.414686.90000 0004 1797 2180Department of Neurosurgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Yu-Ting Su
- grid.145695.aDepartment of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jia-Shing Chen
- grid.411447.30000 0004 0637 1806School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Loong Liang
- grid.414686.90000 0004 1797 2180Department of Neurosurgery, E-Da Hospital, Kaohsiung, Taiwan ,grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Patrick Ching-Ho Hsieh
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chun Wu
- grid.411447.30000 0004 0637 1806School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- grid.412019.f0000 0000 9476 5696Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,grid.412027.20000 0004 0620 9374Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Lin C, Zhang H, Chen L, Fang Y, Chen J. Immunoregulatory function of Dictyophora echinovolvata spore polysaccharides in immunocompromised mice induced by cyclophosphamide. Open Life Sci 2021; 16:620-629. [PMID: 34183994 PMCID: PMC8218551 DOI: 10.1515/biol-2021-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to investigate whether the Dictyophora echinovolvata spore polysaccharides (DESP) affect the immunity in immunocompromised mice induced by cyclophosphamide (CTX). The healthy female Kunming mice were randomly divided into six groups, including a normal control (NC) group, a positive control group, a model control (MC) group, and three groups treated with low-, intermediate-, and high-dose polysaccharide, respectively. A series of immunoregulatory properties were determined, including humoral and cellular immunity, immune function, and immune factors of mononuclear macrophages. Compared with NC and MC groups, treatment with DESP significantly increased the spleen index and decreased the thymus index; increased the serum concentrations of immunoglobulin (Ig)A, IgG, IgM, hemolysin, IL-1β, and IL-2; delayed the allergic reaction; and improved the splenic lymphocyte transformation ability; and enhanced the phagocytosis of macrophages and the ability to secrete IL-6, TNF-α, caspase-1, and NO with DESP supplementation. These results indicated that DESP might have a good regulatory effect on CTX-induced immunodeficiency in mice, adjust the body’s immune imbalance, and improve the symptoms of low immunity.
Collapse
Affiliation(s)
- Chenqiang Lin
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Hui Zhang
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Longjun Chen
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Yu Fang
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| | - Jichen Chen
- Fujian Academy of Agricultural Sciences, The Soil and Fertilizer Institute, Fuzhou 350013, People's Republic of China
| |
Collapse
|
38
|
Pacifici F, Rovella V, Pastore D, Bellia A, Abete P, Donadel G, Santini S, Beck H, Ricordi C, Daniele ND, Lauro D, Della-Morte D. Polyphenols and Ischemic Stroke: Insight into One of the Best Strategies for Prevention and Treatment. Nutrients 2021; 13:1967. [PMID: 34201106 PMCID: PMC8229516 DOI: 10.3390/nu13061967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke (IS) is still among the leading causes of death and disability worldwide. The pathogenic mechanisms beyond its development are several and are complex and this is the main reason why a functional therapy is still missed. The beneficial effects of natural compounds against cardiovascular diseases and IS have been investigated for a long time. In this article, we reviewed the association between the most studied polyphenols and stroke protection in terms of prevention, effect on acute phase, and rehabilitation. We described experimental and epidemiological studies reporting the role of flavonols, phenolic acid, and stilbens on ischemic mechanisms leading to stroke. We analyzed the principal animal models used to evaluate the impact of these micronutrients to cerebral blood flow and to molecular pathways involved in oxidative stress and inflammation modulation, such as sirtuins. We reported the most significant clinical trials demonstrated as the persistent use of polyphenols is clinically relevant in terms of the reduction of vascular risk factors for IS, such as Atrial Fibrillation. Interestingly, different kinds of polyphenols provide brain protection by activating different pathways and mechanisms, like inducing antithrombotic effect, such as Honokiol. For this reason, we discussed an appropriate integrative use of them as a possible therapeutic alternative against stroke.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Giulia Donadel
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Silvia Santini
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Heinz Beck
- Campus Principe di Napoli, Università Unipegaso, 80132 Napoli, Italy;
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| |
Collapse
|
39
|
Deng M, Zhong X, Gao Z, Jiang W, Peng L, Cao Y, Zhou Z, Huang L. Dynamic changes in Beclin-1, LC3B and p62 at various time points in mice with temporary middle cerebral artery occlusion and reperfusion (tMCAO). Brain Res Bull 2021; 173:124-131. [PMID: 33974897 DOI: 10.1016/j.brainresbull.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Ischaemic stroke is attributable to cerebrovascular disease and is associated with high morbidity, disability, mortality and recurrence. Autophagy is a critical mediator and plays dual roles in ischaemic stroke. Autophagy can protect against ischaemic brain injury during the early stage of ischaemic stroke, while excessive autophagy can induce apoptosis and exacerbate brain injury. However, the time-dependent variations in autophagy in ischaemic stroke are unknown. C57BL/6 mice were used to establish a model of temporary middle cerebral artery occlusion and reperfusion (tMCAO). The neurological functional scores and infarct volumes were determined at 1 d, 3 d, 5 d, and 7 d after modelling. The levels of Beclin-1, LC3B, p62, GFAP, TNF-α, IL-6, IL-10, ROS, 4-HNE and 8-OHDG were measured by ELISA, RT-PCR, immunofluorescence analysis and western blotting. The morphology of autophagosomes of ischaemic penumbra was observed by transmission electron microscopy (TEM). Beclin-1, LC3B, ROS, 4-HNE, 8-OHDG, GFAP, TNF-α and IL-6 levels increased (P < 0.01), while p62 and IL-10 levels decreased (P < 0.01) after tMCAO compared to those in the sham group. Beclin-1, LC3B, ROS, 4-HNE, 8-OHDG, GFAP, TNF-α and IL-6 levels were reduced in tMCAO mice at 3 d, 5 d and 7 d (P<0.05), and p62 and IL-10 levels were enhanced (P < 0.05) compared to those at 1 d. In addition, Beclin-1 positively correlated with LC3B, GFAP, TNF-α, IL-6, ROS, 4-HNE and 8-OHDG (P < 0.05), and Beclin-1 negatively correlated with p62 and IL-10 (P < 0.05). The number of autophagosomes was consistent with the expression of autophagy marker proteins, both showing a steady decrease. In summary, autophagy was activated within 7 d of tMCAO induction, and it strengthened at 1 d and then weakened steadily from 3 to 7 d. In addition, this study verified that autophagy positively correlated with the inflammatory response and oxidative stress at 7 d after tMCAO.
Collapse
Affiliation(s)
- Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Xiaoqin Zhong
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhijie Gao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Wen Jiang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Lilin Peng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Yucheng Cao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Zhongliu Zhou
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| | - Liping Huang
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, PR China.
| |
Collapse
|
40
|
Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545330. [PMID: 33897941 PMCID: PMC8052150 DOI: 10.1155/2021/5545330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral stroke is a serious worldwide health problem, as can be seen by the global epidemic of the disease. In this disorder, when the blood flow is compromised by ruptures or blocked arteries, sudden death of neurons is observed as a result of a lack of oxygen and nutrients. Numerous severe problems and frequent complications also exist in stroke patients; therefore, there is an urgent need to develop new therapeutic, diagnostic, and prognostic methods for the disease. At present, the diagnosis of stroke is based on a neurological examination, medical history, and neuroimaging, due to the fact that rapid and noninvasive diagnostic tests are unavailable. Nevertheless, oxidative stress and inflammation are considered key factors in stroke pathogenesis. Oxygen free radicals are responsible for oxidation of lipids, proteins, and DNA/RNA, which in turn contributes to oxidative damage of the brain. Toxic products of the oxidation reactions act cytostatically on the cell by damaging cell membranes and leading to neuronal death by apoptosis or necrosis. Thus, it seems that redox/inflammatory biomarkers might be used in the diagnosis of the disease. Nowadays, saliva is of increasing interest in clinical laboratory medicine. Redox biomarkers could be obtained easily, noninvasively, cheaply, and stress-free from saliva. This minireview is aimed at presenting the current knowledge concerning the use of salivary biomarkers of oxidative stress and inflammation in the diagnosis and prognosis of stroke.
Collapse
|
41
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Heinsberg LW, Arockiaraj AI, Crago EA, Ren D, Shaffer JR, Sherwood PR, Sereika SM, Weeks DE, Conley YP. Genetic Variability and Trajectories of DNA Methylation May Support a Role for HAMP in Patient Outcomes After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 32:550-563. [PMID: 31346934 DOI: 10.1007/s12028-019-00787-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVE Preclinical evidence suggests that iron homeostasis is an important biological mechanism following aneurysmal subarachnoid hemorrhage (aSAH); however, this concept is underexplored in humans. This study examined the relationship between patient outcomes following aSAH and genetic variants and DNA methylation in the hepcidin gene (HAMP), a key regulator of iron homeostasis. METHODS In this exploratory, longitudinal observational study, participants with verified aSAH were monitored for acute outcomes including cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) and evaluated post-discharge at 3 and 12 months for long-term outcomes of death and functional status using the Modified Rankin Scale (mRS; poor = 3-6) and Glasgow Outcome Scale (GOS; poor = 1-3). Participants were genotyped for two genetic variants, and DNA methylation data were collected from serial cerebrospinal fluid over 14 days post-aSAH at eight methylation sites within HAMP. Participants were grouped based on their site-specific DNA methylation trajectory, with and without correcting for cell-type heterogeneity (CTH), and the associations between genetic variants and inferred DNA methylation trajectory groups and patient outcomes were tested. To correct for multiple testing, an empirical significance threshold was computed using permutation testing. RESULTS Genotype data for rs10421768 and rs7251432 were available for 241 and 371 participants, respectively, and serial DNA methylation data were available for 260 participants. Acute outcome prevalence included CV in 45% and DCI in 37.1% of the overall sample. Long-term outcome prevalence at 3 and 12 months included poor GOS in 23% and 21%, poor mRS in 31.6% and 27.3%, and mortality in 15.1% and 18.2%, respectively, in the overall sample. Being homozygous for the rs7251432 variant allele was significantly associated with death at 3 months (p = 0.003) and was the only association identified that passed adjustment for multiple testing mentioned above. Suggestive associations (defined as trending toward significance, p value < 0.05, but not meeting empirical significance thresholds) were identified between the homozygous variant allele for rs7251432 and poor GOS and mRS at 3 months (both p = 0.04) and death at 12 months (p = 0.02). For methylation trajectory groups, no associations remained significant after correction for multiple testing. However, for methylation trajectory groups not adjusted for CTH, suggestive associations were identified between cg18149657 and poor GOS and mRS at 3 months (p = 0.003 and p = 0.04, respectively) and death at 3 months (p = 0.04), and between cg26283059 and DCI (p = 0.01). For methylation trajectory groups adjusted for CTH, suggestive associations were identified between cg02131995 and good mRS at 12 months (p = 0.02), and between cg26283059 and DCI (p = 0.01). CONCLUSIONS This exploratory pilot study offers preliminary evidence that HAMP may play a role in patient outcomes after aSAH. Replication of this study and mechanistic investigation of the role of HAMP in patient outcomes after aSAH are needed.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA.
| | - Annie I Arockiaraj
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dianxu Ren
- Department of Health and Community Systems, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paula R Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan M Sereika
- Department of Health and Community Systems, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, 440 Victoria Building, 3500 Victoria Street, Pittsburgh, PA, 15261, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Maciejczyk M, Gerreth P, Zalewska A, Hojan K, Gerreth K. Salivary Gland Dysfunction in Stroke Patients Is Associated with Increased Protein Glycoxidation and Nitrosative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6619439. [PMID: 33488927 PMCID: PMC7787773 DOI: 10.1155/2020/6619439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Stroke is one of the leading causes of disability and death worldwide. Despite intensive medical care, many of the complaints directly threatening the patient's life marginalize their dental needs after the stroke. Recent studies indicate reduced saliva secretion in stroke patients in addition to the increased incidence of caries and periodontal disease. Since oxidative stress plays a vital role in the pathogenesis of salivary gland hypofunction and neurodegenerative disorders (including stroke), this is the first to evaluate the relationship between salivary gland activity and protein glycoxidation and nitrosative damage. The content of glycation and protein oxidation products and nitrosative stress was assessed in nonstimulated (NWS) and stimulated (SWS) whole saliva of stroke patients with normal salivary secretion and hyposalivation (reduced saliva production). The study included 30 patients in the stroke's subacute phase and 30 healthy controls matched by age and sex. We have shown that stroke patients with hyposalivation show increased contents of protein glycation (↑Amadori products and ↑advanced glycation end products), glycoxidation (↑dityrosine), and nitration (↑nitrotyrosine) products compared to stroke cases with normal salivary secretion and control group. Interestingly, higher oxidative/nitrosative stress was found in NWS, which strongly correlates with salivary flow rate, total protein content, and salivary amylase activity. Such relationships were not observed in the control group. Summarizing, oxidative and nitrosative stress may be one of the mechanisms responsible for the impairment of saliva secretion in stroke patients. However, extraglandular sources of salivary oxidative stress in stroke patients cannot be excluded. Further studies to assess salivary gland hypofunction in stroke cases are necessary.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2C Adama Mickiewicza Street, 15-022 Bialystok, Poland
| | - Piotr Gerreth
- Private Dental Practice, 57 Kasztelanska Street, 60-316 Poznan, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24A Marii Sklodowskiej-Curie Street, 15-276 Bialystok, Poland
| | - Katarzyna Hojan
- Department of Rehabilitation, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swiecickiego Street 6, 60-781 Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| |
Collapse
|
44
|
Tao T, Liu M, Chen M, Luo Y, Wang C, Xu T, Jiang Y, Guo Y, Zhang JH. Natural medicine in neuroprotection for ischemic stroke: Challenges and prospective. Pharmacol Ther 2020; 216:107695. [DOI: 10.1016/j.pharmthera.2020.107695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
|
45
|
Feng Z, Jie L, Guimin L, Xi W. Mixed Lineage Leukemia 1 Promoted Neuron Apoptosis in Ischemic Penumbra via Regulating ASK-1/TNF-α Complex. Front Neuroanat 2020; 14:36. [PMID: 32792914 PMCID: PMC7394220 DOI: 10.3389/fnana.2020.00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Neuron apoptosis in ischemic penumbra was proved to be involved in ischemic stroke (IS) development and contributed to the poor prognosis of IS. Recent studies showed that aberrant trimethylation of histone H3 lysine 4 (H3K4me3) level was associated with cell apoptosis. This study aimed to explore the underlying mechanism of neuron apoptosis in ischemic penumbra via histone methyltransferase (HMT) mixed lineage leukemia 1 (MLL1) mediated epigenetic pathway. Mouse IS model was established by middle cerebral artery occlusion (MCAO). Mouse primary cortical mixed cells were cultured and treated with oxygen–glucose deprivation (OGD) to simulate IS process. The expressions of apoptosis signal regulating kinase-1 (ASK-1), pASK-1, cleaved caspase-3, ASK-1/serine–threonine kinase receptor-associated protein (STRAP)/14-3-3 complex, ASK-1/tumor necrosis factor-α (TNF-α) complex, and MLL1 in mouse brain tissue and mouse primary cortical mixed cells were analyzed. The function of MLL1 was investigated using small interfering RNA (siRNA) targeting MLL1 and vector overexpressing MLL1. In vivo inhibition of MLL1 was conducted to explore its value as a therapeutic target. The prognostic value of MLL1 was investigated in IS patients. Results showed that the expressions of ASK-1, pASK-1, cleaved caspase-3, ASK-1/TNF-α complex, and MLL1 increased significantly in ischemic penumbra compared to brain tissue from the control group (P < 0.05). MCAO and OGD significantly upregulated the H3K4me3 level in ASK-1 promoter region and promoted the recruitment of MLL1 to this region (P < 0.05). siMLL1 significantly reversed the proapoptosis effects of OGD in primary cortical mixed cells, while MLL1 overexpression induced apoptosis of cells (P < 0.05). In vivo inhibition of MLL1 significantly reduced the infarct volume and the neurological score of MCAO mice (P < 0.05). Serum MLL1 level had a positive association with that in ischemic core and penumbra in mouse model and was positively correlated with the infarct volume and neurological score (P < 0.05). Besides, serum MLL1 level was also significantly correlated with the severity of IS (P < 0.05), and high serum MLL1 level indicated poor prognosis of IS patients (P < 0.05). These results revealed that MLL1 contributed to neuron cell apoptosis in ischemic penumbra after IS onset by promoting the formation of ASK-1/TNF-α complex, and its serum level was associated with poor prognosis of IS.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Neurology, Shandong Provincial Western Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Liu Jie
- Department of Neurology, The Fourth Hospital of Jinan City, Jinan, China
| | - Lv Guimin
- Department of Neurology, Zibo Integrated Traditional Chinese and Western Medicine Hospital, Zibo, China
| | - Wang Xi
- Department of Neurology, Chongqing Wulong Hospital of Traditional Chinese Medicine, Wulong, China
| |
Collapse
|
46
|
Overexpression of miR-217-5p protects against oxygen-glucose deprivation/reperfusion-induced neuronal injury via inhibition of PTEN. Hum Cell 2020; 33:1026-1035. [PMID: 32683553 DOI: 10.1007/s13577-020-00396-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is characterized by loss of brain function because of cerebral ischemia. Evidence has been shown that miR-217-5p is significantly downregulated in infarcted brain areas following focal cerebral ischemia. However, the role of miR-217-5p in ischemic stroke is still unclear. To mimic ischemia/reperfusion (I/R) injury conditions in vitro, SH-SY5Y cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R). Our data found that PTEN was the directly target of miR-217-5p in SH-SY5Y cells. The level of miR-217-5p was significantly decreased, while the level of PTEN was notably increased in SH-SY5Y cells following OGD/R treatment. Overexpression of miR-217-5p markedly promoted the proliferation and cell cycle progression, and inhibited apoptosis in OGD/R-treated SH-SY5Y cells. In addition, overexpression of miR-217-5p significantly decreased the expressions of PTEN and FOXO1, but increased the expression of p-Akt in OGD/R-treated SH-SY5Y cells. Moreover, methylation specific PCR (MSP) results indicated the CpG islands in the promoter region of miR-217-5p were hypermethylated in SH-SY5Y cells under OGD/R. Meanwhile, the DNA methylation of miR-217-5p promoter region decreased expression of miR-217-5p. Our data indicated that miR-217-5p could attenuate ischemic injury by inhibiting PTEN. In addition, DNA methylation-mediated silencing of miR-217-5p may serve as a promising therapeutic target of ischemic stroke.
Collapse
|
47
|
Gerreth P, Maciejczyk M, Zalewska A, Gerreth K, Hojan K. Comprehensive Evaluation of the Oral Health Status, Salivary Gland Function, and Oxidative Stress in the Saliva of Patients with Subacute Phase of Stroke: A Case-Control Study. J Clin Med 2020; 9:2252. [PMID: 32679906 PMCID: PMC7408698 DOI: 10.3390/jcm9072252] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
This is the first study to assess, comprehensively, the oral health status; salivary glands' function and enzymatic and non-enzymatic antioxidant defense; and oxidative damage to proteins and lipids in the non-stimulated (NWS) and stimulated (SWS) whole saliva of stroke patients. The study included 30 patients in the subacute phase of the stroke and an age and gender-matched control group. We showed that the activity of antioxidant enzymes (catalase and salivary peroxidase) was significantly higher in both NWS and SWS of stroke patients, similarly to uric acid concentration. However, in the study group, the reduced glutathione (GSH) concentration in SWS decreased. The contents of protein glycooxidation products (advanced glycation end products (AGE) and protein oxidation products (AOPP)) and lipid hydroperoxides were significantly higher in NWS and SWS of stroke patients. In the study group there was also a decrease in stimulated saliva secretion and total protein content. Interestingly, products of protein and lipid oxidation correlate negatively with SWS flow. The ROC analysis showed that salivary GSH with 100% specificity and 100% sensitivity differentiates the analyzed groups (AUC = 1.0). To sum up, in subacute stroke patients there are redox imbalances and oxidative damage to proteins and lipids in non-stimulated and stimulated saliva. Stroke patients also suffer from salivary gland dysfunction.
Collapse
Affiliation(s)
- Piotr Gerreth
- Private Dental Practice, 57 Kasztelanska Street, 60-316 Poznan, Poland;
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2C Adama Mickiewicza Street, 15-022 Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24A Marii Sklodowskiej-Curie Street, 15-276 Bialystok, Poland;
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812 Poznan, Poland
| | - Katarzyna Hojan
- Department of Rehabilitation, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Provincial Hospital, Juraszow Street, 60-479 Poznan, Poland
| |
Collapse
|
48
|
Mao L, Zuo ML, Wang AP, Tian Y, Dong LC, Li TM, Kuang DB, Song GL, Yang ZB. Low expression of miR‑532‑3p contributes to cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Mol Med Rep 2020; 22:2415-2423. [PMID: 32705253 PMCID: PMC7411405 DOI: 10.3892/mmr.2020.11325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
NADPH oxidase 2 (NOX2) is a major subtype of NOX and is responsible for the generation of reactive oxygen species (ROS) in brain tissues. MicroRNAs (miRNAs/miRs) are important epigenetic regulators of NOX2. The present study aimed to identify the role of NOX2 miRNA-targets in ischemic stroke (IS). A rat cerebral ischemia/reperfusion (CI/R) injury model and a SH-SY5Y cell hypoxia/reoxygenation (H/R) model were used to simulate IS. Gene expression levels, ROS production and apoptosis in tissue or cells were determined, and bioinformatic analysis was conducted for target prediction of miRNA. In vitro experiments, including function-gain and luciferase activity assays, were also performed to assess the roles of miRNAs. The results indicated that NOX2 was significantly increased in brain tissues subjected to I/R and in SH-SY5Y cells subjected to H/R, while the expression of miR-532-3p (putative target of NOX2) was significantly decreased in brain tissues and plasma. Overexpression of miR-532-3p significantly suppressed NOX2 expression and ROS generation in SH-SY5Y cells subjected to H/R, as well as reduced the relative luciferase activity of cells transfected with a reporter gene plasmid. Collectively, these data indicated that miR-532-3p may be a target of NOX2 and a biomarker for CI/R injury. Thus, the present study may provide a novel target for drug development and IS therapy.
Collapse
Affiliation(s)
- Li Mao
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Mei-Ling Zuo
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li-Chen Dong
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Tao-Ming Li
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Da-Bin Kuang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Gui-Lin Song
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| | - Zhong-Bao Yang
- Office of Good Clinical Practice, The Affiliated Changsha Hospital of Hunan, Normal University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
49
|
Yan G, Zhao H, Hong X. LncRNA MACC1-AS1 attenuates microvascular endothelial cell injury and promotes angiogenesis under hypoxic conditions via modulating miR-6867-5p/TWIST1 in human brain microvascular endothelial cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:876. [PMID: 32793720 DOI: 10.21037/atm-20-4915] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Hypoxia following ischemic stroke is a common cause of brain insults. Mounting evidence suggests that long non-coding RNAs (lncRNAs) play a vital role in regulating certain physiological and pathological processes including ischemic stroke. For the first time, the present study investigated the effects and mechanism of LncRNA MACC1-AS1 on hypoxia-induced human brain microvascular endothelial cells (HBMECs). Methods LncRNA MACC1-AS1 levels in HBMECs were detected via reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT), were detected using their respective kits. Flow cytometry and clone formation assay were performed to evaluate the effects of lncRNA MACC1-AS1 on cell apoptosis and cell proliferation respectively. Angiogenesis capacity was evaluated via tube formation assay. Transwell migration assay was performed for assessment of cell migration, Western blot assay was performed for measurement of Twist1 and VE-cadherin level, and permeability assay was performed for evaluation of the cell barrier function. The target gene was predicted via bioinformatics online tool and validated through luciferase reporter assay and RNA pull-down assay. Results LncRNA MACC1-AS1 was downregulated in hypoxia-induced HBMECs. Overexpression of LncRNA MACC1-AS1 reduced cell apoptosis and oxidative stress, while promoting cell proliferation, migration, and angiogenesis. Moreover, LncRNA MACC1-AS1 overexpression reduced cell permeability and elevated VE-cadherin level, which contributed to maintaining cell barrier function. TWIST1 was validated as the target of miR-6867-5p which was further targeted by lncRNA MACC1-AS1. Thus, LncRNA MACC1-AS1 functions in hypoxia-induced HBMECs by regulating miR-6867-5p/TWIST1. Conclusions In this study, we found that LncRNA MACC1-AS1 exerted a protective role in hypoxia-induced HBMECs via regulating miR-6867-5p/TWIST1, indicating a new therapeutic strategy for future ischemic stroke therapy.
Collapse
Affiliation(s)
- Guangjun Yan
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Hong
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, Liu J, Du H, Chen R, Pan X, Liu N, Chen H. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol 2020; 34:101503. [PMID: 32199783 PMCID: PMC7327985 DOI: 10.1016/j.redox.2020.101503] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ischemic stroke can induce changes in mitochondrial morphology and function. As a regulatory gene in mitochondria, optic atrophy 1 (OPA1) plays a pivotal role in the regulation of mitochondrial dynamics and other related functions. However, its roles in cerebral ischemia-related conditions are barely understood. METHODS Cultured rat primary cortical neurons were respectively transfected with OPA1-v1ΔS1-encoding and OPA1-v1-encoding lentivirus before exposure to 2-h oxygen-glucose deprivation (OGD) and subsequent reoxygenation (OGD/R). Adult male SD rats received an intracranial injection of AAV-OPA1-v1ΔS1 and were subjected to 90 min of transient middle cerebral artery occlusion (tMCAO) followed by reperfusion. OPA1 expression and function were detected by in vitro and in vivo assays. RESULTS OPA1 was excessively cleaved after cerebral ischemia/reperfusion injury, both in vitro and in vivo. Under OGD/R condition, compared with that of the LV-OPA1-v1-treated group, the expression of OPA1-v1ΔS1 efficiently restored L-OPA1 level and alleviated neuronal death and mitochondrial morphological damage. Meanwhile, the expression of OPA1-v1ΔS1 markedly improved cerebral ischemia/reperfusion-induced motor function damage, attenuated brain infarct volume, neuronal apoptosis, mitochondrial bioenergetics deficits, oxidative stress, and restored the morphology of mitochondrial cristae and mitochondrial length. It also preserved the mitochondrial integrity and reinforced the mtDNA content and expression of mitochondrial biogenesis factors in ischemic rats. INTERPRETATION Our results demonstrate that the stabilization of L-OPA1 protects ischemic brains by reducing neuronal apoptosis and preserving mitochondrial function, suggesting its significance as a promising therapeutic target for stroke prevention and treatment.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Peiqiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yixian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Jianhao Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Mouwei Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Houwei Du
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Ronghua Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, China; Institute of Cerebral Vascular Disease of Fujian Province, Fuzhou, 350001, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|