1
|
Shao H, Zhu J, Zhu Y, Liu L, Zhao S, Kang Q, Liu Y, Zou H. Identification of characteristic genes and construction of regulatory network in gallbladder carcinoma. BMC Med Genomics 2023; 16:240. [PMID: 37821907 PMCID: PMC10566037 DOI: 10.1186/s12920-023-01663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is a highly malignant tumor with a poor overall prognosis. This study aimed to identify the characteristic microRNAs (miRNAs) of GBC and the competing endogenous RNA (ceRNA) regulatory mechanisms. METHODS The microarray data of GBC tissue samples and normal gallbladder (NGB) tissue samples from the Gene Expression Omnibus (GEO) database was downloaded. GBC-related differentially expressed miRNAs (DE-miRNAs) were identified by inter-group differential expression analysis and weighted gene co-expression network analysis (WGCNA). Machine learning algorithms were used to screen the characteristic miRNA based on the intersect between least absolute shrinkage and selection operator (LASSO) and Support vector machine-recursive feature elimination (SVM-RFE). Based on the differential expression analysis of GEO database, the ceRNA network of characteristic miRNA was predicted and constructed. The biological functions of the ceRNA network were revealed by carrying out the gene enrichment analysis was implemented. We further screened the key genes of ceRNA network and constructed a protein-protein interaction (PPI) network, and predicted and generated the transcription factors (TFs) network of signature miRNAs. The expression of characteristic miRNA in clinical samples was verified by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 131 GBC-related DE-miRNAs were obtained. The hsa-miR-4770 was defined as characteristic miRNA for GBC. The ceRNA network containing 211 mRNAs, one miRNA, two lncRNAs, and 48 circRNAs was created. Gene enrichment analysis suggested that the downstream genes were mainly involved in actin filament organization, cell-substrate adhesion, cell-matrix adhesion, reactive oxygen species metabolic process, glutamine metabolic process and extracellular matrix (ECM)-receptor interaction pathway. 10 key genes in the network were found to be most correlated with disease, and involved in cell cycle-related processes, p53, and extrinsic apoptotic signaling pathways. The qRT-PCR result demonstrated that hsa-miR-4770 is down-regulated in GBC, and the expression trend is consistent with the public database. CONCLUSIONS We identified hsa-miR-4770 as the characteristic miRNA for GBC. The ceRNA network of hsa-miR-4770 may play key roles in GBC. This study provided some basis for potential pathogenesis of GBC.
Collapse
Affiliation(s)
- Hanrui Shao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Jiahai Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Ya Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Lixin Liu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Songling Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Qiang Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Yunxia Liu
- Experiment Teaching Center, Basic Medical School, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P.R. China.
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China.
| |
Collapse
|
2
|
Steffens Reinhardt L, Groen K, Newton C, Avery-Kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023; 1878:188882. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kira Groen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Cheryl Newton
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
3
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol 2021; 236:5547-5563. [PMID: 33469931 DOI: 10.1002/jcp.30285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Inflammasomes are a group of multiprotein signaling complexes located in the cytoplasm. Several inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, AIM2, and NLRC4. Among them, NLRP3 was investigated in most detail, and it was reported that it can be activated by many different stimuli. Increased NLRP3 protein expression and inflammasome assembly lead to caspase-1 mediated maturation and release of IL-1β, which triggers inflammation and pyroptosis. The activation of the NLRP3 inflammasome has been widely reported in studies of tumors and neurological diseases, but relatively few studies on the cardiovascular system. Ventricular remodeling (VR) is an important factor contributing to heart failure (HF) after myocardial infarction (MI). Consequently, delaying VR is of great significance for improving heart function. Studies have shown that the NLRP3 inflammasome plays an essential role in the process of VR. Here, we reviewed the latest studies on the activation pathway of the NLRP3 inflammasome, focusing on the effects of the NLRP3 inflammasome in primary cells during VR, and finally discuss future research directions in this field.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Shi
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaping Zhu
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
DNA polymerase-γ hypothesis in nucleoside reverse transcriptase-induced mitochondrial toxicity revisited: A potentially protective role for citrus fruit-derived naringenin? Eur J Pharmacol 2019; 852:159-166. [PMID: 30876974 DOI: 10.1016/j.ejphar.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) form the backbone in combination antiretroviral therapy (cARVs). They halt chain elongation of the viral cDNA by acting as false substrates in counterfeit incorporation mechanism to viral RNA-dependent DNA polymerase. In the process genomic DNA polymerase as well as mitochondrial DNA (mtDNA) polymerase-γ (which has a much higher affinity for these drugs at therapeutic doses) are also impaired. This leads to mitochondrial toxicity that manifests clinically as mitochondrial myopathy, peripheral neuropathy, hyperlactatemia or lactic acidosis and lipoatrophy. This has led to the revision of clinical guidelines by World Health Organization to remove stavudine from first-line listing in the treatment of HIV infections. Recent reports have implicated oxidative stress besides mtDNA polymerase-γ hypothesis in NRTI-induced metabolic complications. Reduced plasma antioxidant concentrations have been reported in HIV positive patients on cARVs but clinical intervention with antioxidant supplements have not been successful either due to low efficacy or poor experimental designs. Citrus fruit-derived naringenin has previously been demonstrated to possess antioxidant and free radical scavenging properties which could prevent mitochondrial toxicity associated with these drugs. This review revisits the controversy surrounding mtDNA polymerase-γ hypothesis and evaluates the potential benefits of naringenin as a potent anti-oxidant and free radical scavenger which as a nutritional supplement or therapeutic adjunct could mitigate the development of mitochondrial toxicity associated with these drugs.
Collapse
|
6
|
Wei P, Yang F, Zheng Q, Tang W, Li J. The Potential Role of the NLRP3 Inflammasome Activation as a Link Between Mitochondria ROS Generation and Neuroinflammation in Postoperative Cognitive Dysfunction. Front Cell Neurosci 2019; 13:73. [PMID: 30873011 PMCID: PMC6401615 DOI: 10.3389/fncel.2019.00073] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is commonly observed in perioperative care following major surgery and general anesthesia in elderly individuals. No preventive or interventional agents have been established so far. Although the role of interleukin-1β (IL-1β)-mediated neuroinflammation following surgery and anesthesia is strongly implicated in POCD, the exact mechanism of action remains to be explored. Growing evidence has shown that mitochondria-derived reactive oxygen species (mtROS) are closely linked to IL-1β expression through a redox sensor known as the nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Therefore, we hypothesize that the mechanisms underlying POCD involve the mtROS/NLRP3 inflammasome/IL-1β signaling pathway. Furthermore, we speculate that cholinergic anti-inflammatory pathway induced by α7 nicotinic acetylcholine receptor (a7nAChR) may be the potential upstream of mtROS/NLRP3 inflammasome/IL-1β signaling pathway in POCD. For validating the hypotheses, we provide experimental plan involving different paradigms namely; microglial cells and behavioral studies. The link between mtROS, the NLRP3 inflammasome, and IL-1β within and between these different stages in combination with mtROS and NLRP3 inflammasome agonists and inhibitors could be explored using techniques, such as knockout mice, small interference ribonucleic acid, flow cytometry, co-immunoprecipitation, and the Morris Water Maze test. We conclude that the NLRP3 inflammasome is a new preventive and therapeutic target for POCD.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Fan Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China.,Department of Anesthesiology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
7
|
Xu J, Zang Y, Liu D, Yang T, Wang J, Wang Y, Liu X, Chen D. DRAM is Involved in Hypoxia/Ischemia-Induced Autophagic Apoptosis in Hepatocytes. Aging Dis 2019; 10:82-93. [PMID: 30705770 PMCID: PMC6345327 DOI: 10.14336/ad.2018.0210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Liver hypoxia/ischemia injury leads to acute liver injury, delayed graft dysfunction, and failure during liver transplantation. Previous studies showed that autophagy is involved in liver hypoxia/ischemia injury. Our and others’ studies have found that the damage-regulated autophagy modulator (DRAM) could induce the autophagic apoptosis. However, the role of DRAM regulating autophagy in liver hypoxia/ischemia injury remains unclear. The aim of this study was to determine whether DRAM is involved in oxygen-glucose deprivation (OGD)-induced hepatocyte autophagic apoptosis. Normal hepatocytes (HL-7702) were treated with OGD while Balb/c mice underwent surgery to induce 70% liver ischemia. To evaluate the role of DRAM in hypoxia/ischemia-induced hepatic injury, DRAM siRNA was used to knockdown DRAM expression in cultured hepatocytes and a recombinant adenovirus vector expressing DRAM was used to overexpress DRAM in cultured hepatocytes in vitro and in the liver in vivo. Hepatic injury was analyzed by histopathological methods and measurement of hepatocyte enzyme release. Cell apoptosis was analyzed by flow cytometry and TUNEL staining. Several autophagic biomarkers were observed by western blot analysis. OGD and 70% hepatic ischemia significantly induced cell autophagy, apoptosis and DRAM expression in hepatocytes in vitro and in vivo. OGD-induced autophagic apoptosis was inhibited by 3-Methyladenine (3-MA). OGD-induced injury and autophagy in HL-7702 cells were significantly attenuated by DRAM knockdown but aggravated by DRAM overexpression in vitro. Similarly, DRAM overexpression increased ischemia-induced liver injury and hepatic apoptosis in vivo. Our data demonstrate that hypoxia/ischemia induces hepatic injury through a DRAM-dependent autophagic apoptosis pathway. These data also suggest that DRAM plays an important role in ischemia-induced liver injury and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Jianji Xu
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yunjin Zang
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,3Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dongjie Liu
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Tongwang Yang
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Jieling Wang
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yanjun Wang
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Xiaoni Liu
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Dexi Chen
- 1Beijing You'an Hospital Affiliated with Capital Medical University, Beijing 100069, China.,2Beijing Institute of Hepatology, Capital Medical University, Beijing 100069, China.,4The Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
8
|
Yosudjai J, Wongkham S, Jirawatnotai S, Kaewkong W. Aberrant mRNA splicing generates oncogenic RNA isoforms and contributes to the development and progression of cholangiocarcinoma. Biomed Rep 2019; 10:147-155. [PMID: 30906543 PMCID: PMC6403481 DOI: 10.3892/br.2019.1188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma is a lethal biliary cancer, with an unclear molecular pathogenesis. Alternative splicing is a post-transcriptional modification that generates mature mRNAs, which are subsequently translated into proteins. Aberrant alternative splicing has been reported to serve a role in tumor initiation, maintenance and metastasis in several types of human cancer, including cholangiocarcinoma. In this review, the aberrant splicing of genes and the functional contributions of the spliced genes, in the carcinogenesis, progression and aggressiveness of cholangiocarcinoma are summarized. In addition, factors that influence this aberrant splicing that may be relevant as therapeutic targets or prognosis markers for cholangiocarcinoma are discussed.
Collapse
Affiliation(s)
- Juthamas Yosudjai
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center for Research of Excellence (SiCORE) for System Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Medical School, Mahidol University, Bangkok 10700, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
9
|
Kazantseva M, Eiholzer RA, Mehta S, Taha A, Bowie S, Roth I, Zhou J, Joruiz SM, Royds JA, Hung NA, Slatter TL, Braithwaite AW. Elevation of the TP53 isoform Δ133p53β in glioblastomas: an alternative to mutant p53 in promoting tumor development. J Pathol 2018; 246:77-88. [PMID: 29888503 PMCID: PMC6120556 DOI: 10.1002/path.5111] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/05/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
As tumor protein 53 (p53) isoforms have tumor‐promoting, migration, and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full‐length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT‐qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumor‐associated macrophage content, and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163‐positive macrophages and wild‐type TP53. In situ‐based analyses found Δ133p53β expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C‐C motif chemokine ligand 2 (CCL2) expressed. Tumors with increased Δ133p53β had increased numbers of cells positive for macrophage colony‐stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine ‘mimic’ of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest that elevated Δ133p53β is an alternative pathway to TP53 mutation in glioblastoma that aids tumor progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53β to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marina Kazantseva
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Ramona A Eiholzer
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Ahmad Taha
- Department of Neurosurgery, Southern District Heath Board, New Zealand
| | - Sara Bowie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Imogen Roth
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jean Zhou
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Radiology, Southern District Health Board, New Zealand
| | - Sebastien M Joruiz
- Jacqui Wood Cancer Centre, Division of Cancer Research, University of Dundee, UK
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Noelyn A Hung
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Antony W Braithwaite
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| |
Collapse
|
10
|
A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation. Mamm Genome 2018; 29:831-842. [PMID: 29992419 DOI: 10.1007/s00335-018-9758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
This review paper outlines studies on the Δ122p53 mouse, a model of the human Δ133p53 isoform, together with studies in other model organisms, cell culture, and where available, clinical investigations. In general, these studies imply that, in contrast to the canonical p53 tumor suppressor, Δ133p53 family members have oncogenic capability. Δ122p53 is multi-functional, conferring survival and proliferative advantages on cells, promoting invasion, metastasis and vascularization, as does Δ133p53. Cancers with high levels of Δ133p53 often have poor prognosis. Δ122p53 mediates its effects through the JAK-STAT and RhoA-ROCK signaling pathways. We propose that Δ133p53 isoforms have evolved as inflammatory signaling molecules to deal with the consequent tissue damage of p53 activation. However, if sustained expression of the isoforms occur, pathologies may result.
Collapse
|