1
|
Jia ZX, Xiao BT, Li J, Cai XH, Qin W, Zhou M, Lu XZ. BTK inhibitors enhance NKG2D ligand expression by regulating IL-10/STAT3 pathway in activated non-GCB diffuse large B-cell lymphoma cells. Anticancer Drugs 2025; 36:374-382. [PMID: 40029697 DOI: 10.1097/cad.0000000000001696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The aim of this study is to explore the role of the IL-10/STAT3 pathway in the upregulation of natural killer group 2, member D (NKG2D) ligands (MICA and ULBP2) induced by Bruton's tyrosine kinase (BTK) inhibitors in non-germinal center B-cell-like diffuse large B-cell lymphoma cells. The expression levels of NKG2D ligands and the IL-10/STAT3 pathway in SUDHL4, U2932, and OCI-LY3 cells were analyzed using western blotting. After stimulation of the B-cell receptor signaling pathway with IgM antibodies, the expression levels of NKG2D ligands, as well as IL-10 and phosphorylated STAT3 (p-STAT3) were significantly reduced. In contrast, treatment with ibrutinib produced effects opposite to those induced by IgM antibodies. Additionally, treatment of U2932 and OCI-LY3 cells with the STAT3 inhibitor (STAT3-IN-1) led to an increase in NKG2D ligand expression and a decrease in IL-10 levels. When IL-10 neutralizing antibodies were introduced, p-STAT3 levels decreased, and NKG2D ligand expression increased. Similar outcomes were observed when the BTK inhibitors ACP-196 and BGB-3111 were administered. Our findings suggest that the IL-10/STAT3 pathway plays a key role in the upregulation of NKG2D ligands induced by BTK inhibitors in U2932 and OCI-LY3 cells.
Collapse
Affiliation(s)
- Zhu-Xia Jia
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bi-Tao Xiao
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Jin Li
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Xiao-Hui Cai
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Wei Qin
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Min Zhou
- Department of Hematology, The Third People's Hospital of Changzhou
| | - Xu-Zhang Lu
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Wu Y, Yin M, Xia W, Dou B, Liu X, Sun R. Enhancing NK Cell Antitumor Activity With Natural Compounds: Research Advances and Molecular Mechanisms. Phytother Res 2025; 39:1905-1929. [PMID: 39931789 DOI: 10.1002/ptr.8456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 05/21/2025]
Abstract
In recent years, immunotherapy has become a novel antitumor strategy in addition to traditional surgery, radiotherapy, and chemotherapy and has exhibited promising results in clinical applications. Despite significant breakthroughs in immunotherapy, such as immune checkpoint blockade and CAR-T cell therapy, it remains necessary to develop more efficacious, safer, and cheaper immunotherapeutic drugs due to factors including small reaction populations, acquired resistance, adverse side effects, and high costs. Natural killer (NK) cells are preeminent cytotoxic lymphocytes of the innate immune system that act as the first line of defense against tumors and synergistically enhance the adaptive immune response of T lymphocytes. Therefore, boosting the antitumor function of NK cells is an important direction in the development of immunotherapy. For decades, various immunotherapies such as adoptive cell therapy, antibody drugs, cytokines supplement, and chemical immunomodulators have been developing rapidly to improve the function of NK cells. Compared to biological immunotherapy, immunomodulators derived from natural products have outstanding advantages of low immunogenicity, multi-targeting, and cost-effectiveness. Currently, increasing attention is being focused on discovering NK cell-stimulating agents from natural products, such as polysaccharides, alkaloids, terpenoids, saponins, phenolics, and quinones. This review aims to categorize and summarize the comprehensive research progress on these natural products, discuss their potential molecular mechanisms in regulating NK cells, and explore their clinical applications as standalone treatments or in combination with conventional chemotherapy regimens.
Collapse
Affiliation(s)
- Yu Wu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Mingxiao Yin
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Wenjiao Xia
- Department of Urology, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, P. R. China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Xiaoyu Liu
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Ru Sun
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| |
Collapse
|
3
|
Siemaszko J, Łacina P, Szymczak D, Szeremet A, Majcherek M, Czyż A, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. Soluble MICA concentrations and genetic variability of MICA and its NKG2D receptor as factors affecting Graft-versus-Host Disease development after allogeneic haematopoietic stem cell transplantation. Hum Immunol 2024; 85:111147. [PMID: 39332041 DOI: 10.1016/j.humimm.2024.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Despite new treatment strategies, graft-versus-host disease (GvHD) remains a formidable complication after allogeneic hematopoietic stem cell transplantation (HSCT). This study aimed to investigate the impact of polymorphisms and expression of MICA and NKG2D receptor on the development of GvHD in allogeneic HSCT recipients. Soluble MICA (sMICA) concentration was measured in serum collected 30 days after transplantation and the genetic variability of MICA and NKG2D genes was evaluated. The frequency of NKG2D+NK cells was determined by flow cytometry before and (21, 30, 60 and 90 days) after transplantation. Recipients with acute GvHD grades II-IV carried the NKG2D rs1049174 C allele more frequently than controls or patients with no or mild disease. Patients with chronic GvHD had higher frequency of NKG2D expressing NK cells posttransplant, reflecting increased activity of their NK cells. Although no direct relationship between MICA SNPs and GvHD were observed, the presence of MICA rs1051792 GG genotype correlated with elevated sMICA levels and increased serum level of sMICA was associated with higher risk of chronic GvHD. Our findings suggest that sMICA concentration may serve as a potential biomarker for chronic GvHD and emphasize the impact of genetic variability of NKG2D and its surface expression on the HSCT outcome.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Donata Szymczak
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Szeremet
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Majcherek
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Czyż
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Cellular Therapies and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Guo F, Du N, Wen X, Li Z, Guo Y, Zhou L, Hoffman AR, Li L, Hu JF, Cui J. CircARAP2 controls sMICA-induced NK cell desensitization by erasing CTCF/PRC2-induced suppression in early endosome marker RAB5A. Cell Mol Life Sci 2024; 81:307. [PMID: 39048814 PMCID: PMC11335232 DOI: 10.1007/s00018-024-05285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024]
Abstract
Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Nawen Du
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Xue Wen
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Zhaozhi Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yantong Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Andrew R Hoffman
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Lingyu Li
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Ji-Fan Hu
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Stanford University School of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
6
|
Wu Q, Li X, Yang Y, Huang J, Yao M, Li J, Huang Y, Cai X, Geller DA, Yan Y. MICA+ Tumor Cell Upregulated Macrophage-Secreted MMP9 via PROS1-AXL Axis to Induce Tumor Immune Escape in Advanced Hepatocellular Carcinoma (HCC). Cancers (Basel) 2024; 16:269. [PMID: 38254761 PMCID: PMC10813556 DOI: 10.3390/cancers16020269] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND tumor-associated macrophages (TAMs) constitute a significant proportion of non-cancerous cells within the intricate tumor microenvironment (TME) of hepatocellular carcinoma (HCC). Understanding the communication between macrophages and tumor cells, as well as investigating potential signaling pathways, holds promise for enhancing therapeutic responses in HCC. METHODS single-cell RNA-sequencing data and bulk RNA-sequencing data were derived from open source databases Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Through this analysis, we elucidated the interactions between MICA+ tumor cells and MMP9+ macrophages, primarily mediated via the PROS1-AXL axis in advanced HCC. Subsequently, we employed a range of experimental techniques including lentivirus infection, recombinant protein stimulation, and AXL inhibition experiments to validate these interactions and unravel the underlying mechanisms. RESULTS we presented a single-cell atlas of advanced HCC, highlighting the expression patterns of MICA and MMP9 in tumor cells and macrophages, respectively. Activation of the interferon gamma (IFN-γ) signaling pathway was observed in MICA+ tumor cells and MMP9+ macrophages. We identified the existence of an interaction between MICA+ tumor cells and MMP9+ macrophages mediated via the PROS1-AXL axis. Additionally, we found MMP9+ macrophages had a positive correlation with M2-like macrophages. Subsequently, experiments validated that DNA damage not only induced MICA expression in tumor cells via IRF1, but also upregulated PROS1 levels in HCC cells, stimulating macrophages to secrete MMP9. Consequently, MMP9 led to the proteolysis of MICA. CONCLUSION MICA+ HCC cells secreted PROS1, which upregulated MMP9 expression in macrophages through AXL receptors. The increased MMP9 activity resulted in the proteolytic shedding of MICA, leading to the release of soluble MICA (sMICA) and the subsequent facilitation of tumor immune escape.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Xicai Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Jingquan Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Ming Yao
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Jianjun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Yubin Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - Xiaoyong Cai
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; (Q.W.); (X.L.); (Y.Y.); (J.H.); (M.Y.); (J.L.); (Y.H.); (X.C.)
| |
Collapse
|
7
|
Fantini M, Tsang KY, Arlen PM. Generation of the therapeutic monoclonal antibody NEO-201, derived from a cancer vaccine, which targets human malignancies and immune suppressor cells. Expert Rev Vaccines 2024; 23:812-829. [PMID: 39186325 DOI: 10.1080/14760584.2024.2397011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cancer vaccines stimulate the activation of specific humoral and cellular adaptive responses against cancer cells.Antibodies generated post vaccination can be isolated and further selected to develop highly specific and potent monoclonal antibodies (mAbs) against tumor-associated antigens. AREAS COVERED This review describes different types of cancer vaccines, the process of the generation of the mAb NEO-201 from the Hollinshead cancer vaccine platform, the characterization of the antigen recognized by NEO-201, the ability of NEO-201 to bind and mediate the killing of cancer cells and immunosuppressive cells (gMDSCs and Tregs) through ADCC and CDC, NEO-201 preclinical and clinical toxicity and efficacy. EXPERT OPINION To overcome the problem of poor clinical efficacy of cancer vaccines, due to the activity of immunosuppressive cells, cancer vaccines could be combined with other immunotherapeutics able to deplete immunosuppressive cells. Results from clinical trials, employing NEO-201 alone or in combination with pembrolizumab, showed that durable stabilization of disease after treatment was due to the ability of NEO-201 to target and reduce the percentage of circulating Tregs and gMDSCs.These findings provide compelling support to combine NEO-201 with cancer vaccines to reintegrate their ability to elicit a robust and durable immune adaptive response against cancer.
Collapse
|
8
|
Yang C, Qian C, Zheng W, Dong G, Zhang S, Wang F, Wei Z, Xu Y, Wang A, Zhao Y, Lu Y. Ginsenoside Rh2 enhances immune surveillance of natural killer (NK) cells via inhibition of ERp5 in breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155180. [PMID: 38043385 DOI: 10.1016/j.phymed.2023.155180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND One critical component of the immune system that prevents breast cancer cells from forming distant metastasis is natural killer (NK) cells participating in immune responses to tumors. Ginsenoside Rh2 (GRh2) as one of the major active ingredients of ginseng has been employed in treatment of cancers, but the function of GRh2 in modulating the development of breast cancer remains elusive. PURPOSE This study was to dissect the effect of GRh2 against breast cancer and its potential mechanisms associated with NK cells, both in vitro and in vivo. METHODS MDA-MB-231 and 4T1 cells were used to establish in situ and hematogenous mouse models. MDA-MB-231 and MCF-7 were respectively co-cultured with NK92MI cells or primary NK cells in vitro. Anti-tumor efficacy of GRh2 was verified by immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), high resolution micro-computed tomography (micro-CT) scanning of lungs and hematoxylin and eosin (H&E) staining. Lactate dehydrogenase (LDH) cytotoxicity assay, flow cytometry, in vivo depletion of NK cells, enzyme-linked immunosorbent assay (ELISA), western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence and cell transfection were performed for investigating the anti-tumor mechanisms of GRh2. Molecular docking, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) were employed to determine the binding between endoplasmic reticulum protein 5 (ERp5) and GRh2. RESULTS We demonstrated that GRh2 exerted prominent impacts on retarding the growth and metastasis of breast cancer through boosting the cytotoxic function of NK cells, as validated by the elevated release of perforin, granzyme B and interferon-γ (IFN-γ). Mechanistical studies revealed that GRh2 was capable of diminishing the expression of ERp5 and GRh2 directly bound to ERp5 in MDA-MB-231 cells as well as on a recombinant protein level. GRh2 prevented the formation of soluble MICA (sMICA) and upregulated the expression level of MICA in vivo and in vitro. Importantly, the reduced lung metastasis of breast cancer by GRh2 was almost abolished upon the depletion of NK cells. Moreover, GRh2 was able to insert into the binding pocket of ERp5 directly. CONCLUSION We firstly demonstrated that GRh2 played a pivotal role in augmenting NK cell activity by virtue of modulating the NKG2D-MICA signaling axis via directly binding to ERp5, and may be further optimized to a therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feihui Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhua Xu
- Jiangsu Health Vocational College, Nanjing 211800, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|
10
|
Riva C, Vernarecci C, Minetto P, Goda R, Greppi M, Pesce S, Chies M, Zecchetti G, Ferro B, Maio E, Cea M, Lemoli RM, Marcenaro E, Guolo F. Harnessing Immune Response in Acute Myeloid Leukemia. J Clin Med 2023; 12:5824. [PMID: 37762763 PMCID: PMC10532363 DOI: 10.3390/jcm12185824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the results achieved with the evolution of conventional chemotherapy and the inclusion of targeted therapies in the treatment of acute myeloid leukemia (AML), survival is still not satisfying, in particular in the setting of relapsed/refractory (R/R) disease or elderly/unfit patients. Among the most innovative therapeutic options, cellular therapy has shown great results in different hematological malignancies such as acute lymphoblastic leukemia and lymphomas, with several products already approved for clinical use. However, despite the great interest in also expanding the application of these new treatments to R/R AML, no product has been approved yet for clinical application. Furthermore, cellular therapy could indeed represent a powerful tool and an appealing alternative to allogeneic hematopoietic stem cell transplantation for ineligible patients. In this review, we aim to provide an overview of the most recent clinical research exploring the effectiveness of cellular therapy in AML, moving from consolidated approaches such as post- transplant donor's lymphocytes infusion, to modern adoptive immunotherapies such as alloreactive NK cell infusions, engineered T and NK cells (CAR-T, CAR-NK) and novel platforms of T and NK cells engaging (i.e., BiTEs, DARTs and ANKETTM).
Collapse
Affiliation(s)
- Carola Riva
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Chiara Vernarecci
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Paola Minetto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Rayan Goda
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Maria Chies
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Giada Zecchetti
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Beatrice Ferro
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Elena Maio
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Roberto Massimo Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Emanuela Marcenaro
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.G.); (M.G.); (S.P.)
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (C.R.); (C.V.); (M.C.); (G.Z.); (B.F.); (E.M.); (M.C.); (R.M.L.); (F.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| |
Collapse
|
11
|
Zhu Q, Huang B, Wu L, Luo Q. Mechanism of PAX6 overexpression in inhibiting the growth of hepatocellular carcinoma cells and promoting the killing ability of the natural killer cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:947-956. [PMID: 37724397 PMCID: PMC10930045 DOI: 10.11817/j.issn.1672-7347.2023.230050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVES Paired box gene 6 (PAX6) plays a major role in the regulation of embryonic development. Abnormal expression of PAX6 is associated with the development of various tumors. PAX6 can play a role in promoting or suppressing cancer in different tumors. This study aim to observe the effect of overexpression of PAX6 on the growth of hepatocellular carcinoma cells, and the killing of hepatocellular carcinoma cells via natural killer (NK) cell and the possible mechanism. METHODS The protein levels of PAX6, soluble major histocompatibility complex class I-like protein A (sMICA) and soluble UL16 binding protein 2 (sULBP2) in peripheral blood from 68 cases of hepatocellular carcinoma (HCC) patients and 10 healthy volunteers were detected by ELISA. Hepatocellular carcinoma cell line (HepG2, LM3) and human normal liver cells (LO2) were cultured at 37 ℃ and 5% CO2 condition in vitro. The PAX6 overexpressed plasmid (PAX6-OE) and empty vector (NC) were transferred into HepG2 and LM3 cells to construct stable cell lines. The mRNA and protein expression levels of PAX6 in HepG2 and LM3 cells were detected by real-time PCR, Western blotting and immunofluorescence, respectively. PAX6 was overexpressed in HepG2 and LM3 cells, the cell growth and migration ability were detected by CCK-8 method and cell scratch assay, and the levels of sMICA and sULBP2 in the supernatant were detected by ELISA. Matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and disintegrin and metalloproteinase 10 (ADAM10) in HepG2 and LM3 cells were detected by Western blotting. The killing ability of NK cells against these 2 HCC cells was detected by flow cytometry. RESULTS Compared with the healthy volunteers, the expressions of PAX6 in the HCC patients were significantly decreased (P=0.002), while the expression of sMICA and sULBP2 were significantly increased (P=0.004 and P<0.001, respectively). Real-time PCR and Western blotting results showed that compared with LO2 cells, mRNA and protein expressions of PAX6 in HepG2 and LM3 cells were significantly decreased (all P<0.05). Immunofluorescence results also showed that the expressions of PAX6 in HepG2 and LM3 were lower than those of LO2 cells. Compared with the NC group, the ability of proliferation and migration of HepG2 and LM3 cells were decreased (both P<0.05). The protein expressions of MMP2, MMP9 and ADAM10 in HepG2 and LM3 cells in the PAX6-OE group were significantly decreased, and the levels of sMICA and sULBP2 in superneant of HepG2 and LM3 cells in the PAX6-OE group were significantly lower than those in the NC group (all P<0.05). Flow cytometry results showed that compared with the NC group, the proportion of NK cells killing HepG2 and LM3 cells in PAX6-OE group was significantly increased (both P<0.05). CONCLUSIONS The expression of PAX6 is decreased in serum of HCC patients and hepatocellular carcinoma cell lines. Overexpression of PAX6 can inhibit the growth of hepatocellular carcinoma cells, enhance the killing efficiency of NK cells against hepatoma cells. The mechanism is related to the inhibition of the expression of metalloproteinase via PAX6 and the decrease of the secretion levels of sMICA and sULBP2.
Collapse
Affiliation(s)
- Quan Zhu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410008.
| | - Baisheng Huang
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Lixiang Wu
- Department of Physiology, School of Basic Medicine, Central South University, Changsha 410008, China
| | - Qizhi Luo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410008.
| |
Collapse
|
12
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 PMCID: PMC10296335 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, ‘Aldo Moro’ University of Bari, 70124 Bari, Italy; (V.R.); (M.P.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy;
| |
Collapse
|
13
|
Cole CB, Morelli MP, Fantini M, Miettinen M, Fetsch P, Peer C, Figg WD, Yin T, Houston N, McCoy A, Lipkowitz S, Zimmer A, Lee JM, Pavelova M, Villanueva EN, Trewhitt K, Solarz BB, Fergusson M, Mavroukakis SA, Zaki A, Tsang KY, Arlen PM, Annunziata CM. First-in-human phase 1 clinical trial of anti-core 1 O-glycans targeting monoclonal antibody NEO-201 in treatment-refractory solid tumors. J Exp Clin Cancer Res 2023; 42:76. [PMID: 36991390 PMCID: PMC10053355 DOI: 10.1186/s13046-023-02649-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND NEO201 is a humanized IgG1 monoclonal antibody (mAb) generated against tumor-associated antigens from patients with colorectal cancer. NEO-201 binds to core 1 or extended core 1 O-glycans expressed by its target cells. Here, we present outcomes from a phase I trial of NEO-201 in patients with advanced solid tumors that have not responded to standard treatments. METHODS This was a single site, open label 3 + 3 dose escalation clinical trial. NEO-201 was administered intravenously every two weeks in a 28-day cycle at dose level (DL) 1 (1 mg/kg), DL 1.5 (1.5 mg/kg) and DL 2 (2 mg/kg) until dose limiting toxicity (DLT), disease progression, or patient withdrawal. Disease evaluations were conducted after every 2 cycles. The primary objective was to assess the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of NEO-201. The secondary objective was to assess the antitumor activity by RECIST v1.1. The exploratory objectives assessed pharmacokinetics and the effect of NEO-201 administration on immunologic parameters and their impact on clinical response. RESULTS Seventeen patients (11 colorectal, 4 pancreatic and 2 breast cancers) were enrolled; 2 patients withdrew after the first dose and were not evaluable for DLT. Twelve of the 15 patients evaluable for safety discontinued due to disease progression and 3 patients discontinued due to DLT (grade 4 febrile neutropenia [1 patient] and prolonged neutropenia [1 patient] at DL 2, and grade 3 prolonged (> 72 h) febrile neutropenia [1 patient] at DL 1.5). A total of 69 doses of NEO-201 were administered (range 1-15, median 4). Common (> 10%) grade 3/4 toxicities occurred as follows: neutropenia (26/69 doses, 17/17 patients), white blood cell decrease (16/69 doses, 12/17 patients), lymphocyte decrease (8/69 doses, 6/17 patients). Thirteen patients were evaluable for disease response; the best response was stable disease (SD) in 4 patients with colorectal cancer. Analysis of soluble factors in serum revealed that a high level of soluble MICA at baseline was correlated with a downregulation of NK cell activation markers and progressive disease. Unexpectedly, flow cytometry showed that NEO-201 also binds to circulating regulatory T cells and reduction of the quantities of these cells was observed especially in patients with SD. CONCLUSIONS NEO-201 was safe and well tolerated at the MTD of 1.5 mg/kg, with neutropenia being the most common adverse event. Furthermore, a reduction in the percentage of regulatory T cells following NEO-201 treatment supports our ongoing phase II clinical trial evaluating the efficiency of the combination of NEO-201 with the immune checkpoint inhibitor pembrolizumab in adults with treatment-resistant solid tumors. TRIAL REGISTRATION NCT03476681 . Registered 03/26/2018.
Collapse
Affiliation(s)
- Christopher B Cole
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Pia Morelli
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Fetsch
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cody Peer
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Yin
- Clinical Pharmacology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Houston
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann McCoy
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zimmer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslava Pavelova
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin N Villanueva
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn Trewhitt
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - B Brooke Solarz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Fergusson
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Anjum Zaki
- Precision Biologics, Inc, Bethesda, MD, USA
| | | | | | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Chen D, Gao J, Ren L, Chen P, Yang Y, She S, Xie Y, Liao W, Chen H. A signature based on NKG2D ligands to predict the recurrence of hepatocellular carcinoma after radical resection. Cancer Med 2023; 12:6337-6347. [PMID: 36210637 PMCID: PMC10028019 DOI: 10.1002/cam4.5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Due to the high recurrence, the HCC prognosis remains poor. Yet, the biomarkers for predicting the recurrence of high-risk patients are currently lacking. We aimed to develop a signature to predict the recurrence of HCC based on NKG2D ligands. METHODS The multivariate Cox proportional hazards regression was used to select recurrence-related variables of NKG2D ligands in HCC patients from The Cancer Genome Atlas (TCGA). HCC patients from the OEP000321 dataset and Guilin cohort were used to validate the predictive signature. The mRNA expression of NKG2D ligands was measured by QRT-PCR. Immunohistochemistry analysis of HCC tissue microarray samples was used to identify the expression of NKG2D ligands. RESULTS In this study, NKG2D ligands expression in the mRNA and protein level was both abnormally expressed in HCC and associated with recurrence-free survival (RFS). Then, the recurrence-related variables of NKG2D ligands in HCC were selected by the multivariate Cox proportional hazards regression. Among the eight NKG2D ligands, MICA (HR = 1.347; 95% CI = 1.012-1.793; p = 0.041), ULBP3 (HR = 0.453; 95% CI = 0.231-0.889; p = 0.021) and ULBP5 (HR = 3.617; 95% CI = 1.819-7.194; p < 0.001) were significantly correlated with RFS in the TCGA-LIHC cohort. Then, the signature was constructed by the three NKG2D ligands. The predictive effectiveness of this signature was also validated in the OEP000321 dataset and Guilin cohort. Further, HCC patients were classified into low-risk and high-risk subgroups by the predictive score. Compared with the low-risk group, the high-risk group had poor RFS in both training and validation cohorts. Importantly, compared with the low-risk patients with the G1-G2 stage, the levels of infiltrated NK-activated cells and NKG2D expression were both lower in the high-risk patients. CONCLUSIONS The signature based on MICA, ULBP3, and ULBP5 could predict HCC recurrence.
Collapse
Affiliation(s)
- Dongbo Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Liying Ren
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Pu Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yao Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Shaoping She
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yong Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Da Ren Biotech Limited, Hong Kong, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| |
Collapse
|
15
|
Wang YY, Wang WD, Sun ZJ. Cancer stem cell-immune cell collusion in immunotherapy. Int J Cancer 2023. [PMID: 36602290 DOI: 10.1002/ijc.34421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Immunotherapy has pioneered a new era of tumor treatment, in which the immune checkpoint blockade (ICB) exerts significant superiority in overcoming tumor immune escape. However, the formation of an immune-suppressive tumor microenvironment (TME) and the lack of effective activation of the immune response have become major obstacles limiting its development. Emerging reports indicate that cancer stem cells (CSCs) potentially play important roles in treatment resistance and progressive relapse, while current research is usually focused on CSCs themselves. In this review, we mainly emphasize the collusions between CSCs and tumor-infiltrating immune cells. We focus on the summary of CSC-immune cell crosstalk signaling pathways in ICB resistance and highlight the application of targeted drugs to improve the ICB response.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Da Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Xiao J, Zhang T, Gao F, Zhou Z, Shu G, Zou Y, Yin G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers (Basel) 2022; 14:cancers14225657. [PMID: 36428748 PMCID: PMC9688567 DOI: 10.3390/cancers14225657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an important component of the innate immune system, natural killer (NK) cells have gained increasing attention in adoptive cell therapy for their safety and efficacious tumor-killing effect. Unlike T cells which rely on the interaction between TCRs and specific peptide-MHC complexes, NK cells are more prone to be served as "off-the-shelf" cell therapy products due to their rapid recognition and killing of tumor cells without MHC restriction. In recent years, constantly emerging sources of therapeutic NK cells have provided flexible options for cancer immunotherapy. Advanced genetic engineering techniques, especially chimeric antigen receptor (CAR) modification, have yielded exciting effectiveness in enhancing NK cell specificity and cytotoxicity, improving in vivo persistence, and overcoming immunosuppressive factors derived from tumors. In this review, we highlight current advances in NK-based adoptive cell therapy, including alternative sources of NK cells for adoptive infusion, various CAR modifications that confer different targeting specificity to NK cells, multiple genetic engineering strategies to enhance NK cell function, as well as the latest clinical research on adoptive NK cell therapy.
Collapse
Affiliation(s)
- Jiani Xiao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fei Gao
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengwei Zhou
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| | - Gang Yin
- Department of Pathology, School of Basic Medical Sciences, Xiangya Hospital, Central South University, Changsha 410000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Correspondence: (Y.Z.); (G.Y.)
| |
Collapse
|
17
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
18
|
Xue JS, Ding ZN, Meng GX, Yan LJ, Liu H, Li HC, Yao SY, Tian BW, Dong ZR, Chen ZQ, Hong JG, Wang DX, Li T. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:872353. [PMID: 35464489 PMCID: PMC9021421 DOI: 10.3389/fimmu.2022.872353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57–0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Derosiers N, Aguilar W, DeGaramo DA, Posey AD. Sweet Immune Checkpoint Targets to Enhance T Cell Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:278-285. [PMID: 35017217 DOI: 10.4049/jimmunol.2100706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022]
Abstract
Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.
Collapse
Affiliation(s)
- Nohelly Derosiers
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - William Aguilar
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - David A DeGaramo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Avery D Posey
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and .,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
20
|
Carmena Moratalla A, Carpentier Solorio Y, Lemaitre F, Farzam-Kia N, Levert A, Zandee SEJ, Lahav B, Guimond JV, Haddad E, Girard M, Duquette P, Larochelle C, Prat A, Arbour N. Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 + T-Cell Behaviors. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/1/e1119. [PMID: 34873031 PMCID: PMC8656234 DOI: 10.1212/nxi.0000000000001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES We posit the involvement of the natural killer group 2D (NKG2D) pathway in multiple sclerosis (MS) pathology via the presence of specific NKG2D ligands (NKG2DLs). We aim to evaluate the expression of NKG2DLs in the CNS and CSF of patients with MS and to identify cellular stressors inducing the expression of UL16-binding protein 4 (ULBP4), the only detectable NKG2DL. Finally, we evaluate the impact of ULBP4 on functions such as cytokine production and motility by CD8+ T lymphocytes, a subset largely expressing NKG2D, the cognate receptor. METHODS Human postmortem brain samples and CSF from patients with MS and controls were used to evaluate NKG2DL expression. In vitro assays using primary cultures of human astrocytes and neurons were performed to identify stressors inducing ULBP4 expression. Human CD8+ T lymphocytes from MS donors and age/sex-matched healthy controls were isolated to evaluate the functional impact of soluble ULBP4. RESULTS We detected mRNA coding for the 8 identified human NKG2DLs in brain samples from patients with MS and controls, but only ULBP4 protein expression was detectable by Western blot. ULBP4 levels were greater in patients with MS, particularly in active and chronic active lesions and normal-appearing white matter, compared with normal-appearing gray matter from MS donors and white and gray matter from controls. Soluble ULBP4 was also detected in CSF of patients with MS and controls, but a smaller shed/soluble form of 25 kDa was significantly elevated in CSF from female patients with MS compared with controls and male patients with MS. Our data indicate that soluble ULBP4 affects various functions of CD8+ T lymphocytes. First, it enhanced the production of the proinflammatory cytokines GM-CSF and interferon-γ (IFNγ). Second, it increased CD8+ T lymphocyte motility and favored a kinapse-like behavior when cultured in the presence of human astrocytes. CD8+ T lymphocytes from patients with MS were especially altered by the presence of soluble ULBP4 compared with healthy controls. DISCUSSION Our study provides new evidence for the involvement of NKG2D and its ligand ULBP4 in MS pathology. Our results point to ULBP4 as a viable target to specifically block 1 component of the NKG2D pathway without altering immune surveillance involving other NKG2DL.
Collapse
Affiliation(s)
- Ana Carmena Moratalla
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Florent Lemaitre
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Negar Farzam-Kia
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Annie Levert
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Stephanie E J Zandee
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Boaz Lahav
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Jean Victor Guimond
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Elie Haddad
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Marc Girard
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Pierre Duquette
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Catherine Larochelle
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Alexandre Prat
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada
| | - Nathalie Arbour
- From the Department of Neurosciences (A.C.M., Y.C.S., F.L., N.F-k., A.L., S.E.J.Z., M.G., P.D., C.L., A.P., N.A.), Université de Montréal and Centre de Recherche du CHUM (CRCHUM) Montreal; MS-CHUM Clinic (B.L., M.G., P.D., C.L., A.P.); CLSC des Faubourgs (J.V.G.), CIUSSS du Centre-Sud-de-l'Ile-de-Montréal; and Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics (E.H.), Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Liu R, Luo Q, Luo W, Wan L, Zhu Q, Yin X, Lu X, Song Z, Wei L, Xiang Z, Zou Y. A Soluble NK-CAR Mediates the Specific Cytotoxicity of NK Cells toward the Target CD20 + Lymphoma Cells. Aging Dis 2022; 13:1576-1588. [PMID: 36186137 PMCID: PMC9466963 DOI: 10.14336/ad.2022.0415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/15/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Rongjiao Liu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Qizhi Luo
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Weiguang Luo
- Department of Laboratory Medicine, Henan Provincial People's Hospital; People’s Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ling Wan
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Quan Zhu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiangli Yin
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zixuan Song
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Leiyan Wei
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Yizhou Zou, Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China. .
| |
Collapse
|
22
|
Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 2021; 21:701-717. [PMID: 34376827 DOI: 10.1038/s41568-021-00386-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcome with regard to multiple tumour types. However, most patients still do not benefit from such therapies, notably because of the absence of pre-existing T cell infiltration. DNA damage response (DDR) deficiency has recently emerged as an important determinant of tumour immunogenicity. A growing body of evidence now supports the concept that DDR-targeted therapies can increase the antitumour immune response by (1) promoting antigenicity through increased mutability and genomic instability, (2) enhancing adjuvanticity through the activation of cytosolic immunity and immunogenic cell death and (3) favouring reactogenicity through the modulation of factors that control the tumour-immune cell synapse. In this Review, we discuss the interplay between the DDR and anticancer immunity and highlight how this dynamic interaction contributes to shaping tumour immunogenicity. We also review the most innovative preclinical approaches that could be used to investigate such effects, including recently developed ex vivo systems. Finally, we highlight the therapeutic opportunities presented by the exploitation of the DDR-anticancer immunity interplay, with a focus on those in early-phase clinical development.
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Mathieu Rouanne
- Equipe Labellisée Ligue Nationale contre le Cancer, Inserm Unit U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Département d'Urologie, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Philippe Pasero
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
23
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
24
|
Hong GQ, Cai D, Gong JP, Lai X. Innate immune cells and their interaction with T cells in hepatocellular carcinoma. Oncol Lett 2021; 21:57. [PMID: 33281968 PMCID: PMC7709558 DOI: 10.3892/ol.2020.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor and is associated with necroinflammation driven by various immune cells, such as dendritic cells, macrophages and natural killer cells. Innate immune cells can directly affect HCC or regulate the T-cell responses that mediate HCC. In addition, innate immune cells and T cells are not isolated, which means the interaction between them is important in the HCC microenvironment. Considering the current unsatisfactory efficacy of immunotherapy in patients with HCC, understanding the relationship between innate immune cells and T cells is necessary. In the present review the roles and clinical value of innate immune cells that have been widely reported to be involved in HCC, including dendritic cells, macrophages (including kupffer cells), neutrophils, eosinophils, basophils and innate lymphoid cells and the crosstalk between the innate and adaptive immune responses in the antitumor process have been discussed. The present review will facilitate researchers in understanding the importance of innate immune cells in HCC and lead to innovative immunotherapy approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Guo-Qing Hong
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xing Lai
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
- Correspondence to: Dr Xing Lai, Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, 271 Datong, Tongnan, Chongqing 402660, P.R. China, E-mail:
| |
Collapse
|
25
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
26
|
Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 2020; 18:57-72. [PMID: 33041339 DOI: 10.1038/s41423-020-00561-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.
Collapse
|
27
|
Fu HY, Bao WM, Yang CX, Lai WJ, Xu JM, Yu HY, Yang YN, Tan X, Gupta AK, Tang YM. Kupffer Cells Regulate Natural Killer Cells Via the NK group 2, Member D (NKG2D)/Retinoic Acid Early Inducible-1 (RAE-1) Interaction and Cytokines in a Primary Biliary Cholangitis Mouse Model. Med Sci Monit 2020; 26:e923726. [PMID: 32599603 PMCID: PMC7346879 DOI: 10.12659/msm.923726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Kupffer cells and natural killer (NK) cells has been identified as contributing factors in the pathogenesis of hepatitis, but the detailed mechanism of these cell types in the pathogenesis of primary biliary cholangitis (PBC) is poorly understood. Material/Methods In this study, polyinosinic: polycytidylic acid (poly I: C), 2-octynoic acid-bovine serum albumin (2OA-BSA) and Freund’s adjuvant (FA) were injected to establish a murine PBC model, from which NK cells and Kupffer cells were extracted and isolated. The cells were then co-cultivated in a designed culture system, and then NK group 2, member D (NKG2D), retinoic acid early inducible-1 (RAE-1), F4/80, and cytokine expression levels were detected. Results The results showed close crosstalk between Kupffer cells and NK cells. PBC mice showed increased surface RAE-1 protein expression and Kupffer cell cytokine secretion, which subsequently activated NK cell-mediated target cell killing via NKG2D/RAE-1 recognition, and increased inflammation. NK cell-derived interferon-γ (IFN-γ) and Kupffer cell-derived tumor necrosis factor α (TNF-α) were found to synergistically regulate inflammation. Moreover, interleukin (IL)-12 and IL-10 improved the crosstalk between NK cells and Kupffer cells. Conclusions Our findings in mice are the first to suggest the involvement of the NKG2D/RAE-1 interaction and cytokines in the synergistic effects of NK and Kupffer cells in PBC.
Collapse
Affiliation(s)
- Hai-Yan Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Min Bao
- Department of Hepatobiliary Surgery, First People's Hospital of Yunnan, Kunming, Yunnan, China (mainland)
| | - Cai-Xia Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Wei-Ju Lai
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jia-Min Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hai-Yan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Yi-Na Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Xu Tan
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ajay Kumar Gupta
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
28
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|