1
|
Ulf D, Lukas K, Kyryl K, Michael K, Philipp M, Peter Paul P. Remote ischemic conditioning improves orthostatic competence of cutaneous microcirculation and central hemodynamics. Clin Hemorheol Microcirc 2025:13860291251332086. [PMID: 40368338 DOI: 10.1177/13860291251332086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
BACKGROUND In lower extremity free flap reconstructions, the fragile initial flap perfusion must adapt to orthostatic stress during mobilization, slowing rehabilitation. However, active measures to accelerate this flap training are lacking. Remote Ischemic Conditioning (RIC) has been shown to improve microcirculation, but previous findings are limited to immobilized patients and do not consider the blood pressure-lowering potential of RIC, which could counteract orthostatic regulation. OBJECTIVE To evaluate the effect of RIC on cutaneous perfusion and central hemodynamics during orthostatic stress. METHODS This before-and-after study included 20 healthy volunteers mobilized on a tilt table. One cycle without conditioning was followed by an RIC-cycle 24 h later. Cutaneous microcirculation was assessed using laser Doppler flowmetry and remission spectroscopy at the anterolateral thigh. Hemodynamic parameters were evaluated using noninvasive continuous finger blood pressure measurements. RESULTS RIC resulted in a less pronounced decline in blood flow and oxygen saturation levels below baseline during orthostatic stress (p < 0.003) and a greater increase above baseline during recovery (p < 0.001). Furthermore, post-conditional blood pressure increased more above baseline during orthostastic stress (p < 0.02) and recovery (p < 0.007). CONCLUSIONS RIC may improve the orthostatic competence of cutaneous microcirculation and central hemodynamics, suggesting its potential to support flap training and earlier patient mobilization.
Collapse
Affiliation(s)
- Dornseifer Ulf
- Department of Plastic, Reconstructive and Aesthetic Surgery, ISAR Klinikum, Munich, Germany
| | - Kargl Lukas
- Department of Plastic, Reconstructive and Aesthetic Surgery, ISAR Klinikum, Munich, Germany
| | - Kharytonchuk Kyryl
- Department of Plastic, Reconstructive and Aesthetic Surgery, ISAR Klinikum, Munich, Germany
| | - Kimelman Michael
- Department of Plastic, Reconstructive and Aesthetic Surgery, ISAR Klinikum, Munich, Germany
| | - Moog Philipp
- Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pfeiler Peter Paul
- Department of Plastic, Reconstructive and Aesthetic Surgery, ISAR Klinikum, Munich, Germany
| |
Collapse
|
2
|
Song Z, Ding Y, Sim N, Yun HJ, Feng J, Gu P, Geng X. Vestibular function is associated with immune inflammatory response. Rev Neurosci 2024; 35:293-301. [PMID: 38158886 DOI: 10.1515/revneuro-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Association between vestibular function and immune inflammatory response has garnered increasing interest. Immune responses can lead to anatomical or functional alterations of the vestibular system, and inflammatory reactions may impair hearing and balance. Vestibular disorders comprise a variety of conditions, such as vestibular neuritis, benign paroxysmal positional vertigo, Meniere's disease, vestibular migraine, posterior circulation ischemia, and bilateral vestibular disease. Moreover, some patients with autoimmune diseases develop vestibulocochlear symptom. This paper offers an overview of prevalent vestibular diseases and discusses associations between vestibular dysfunction and immune diseases.
Collapse
Affiliation(s)
- Zhaohui Song
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Nathan Sim
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
| | - Jing Feng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Pan Gu
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and the Stroke Intervention and Translational Center (SITC), Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, 550 E Canfield, 48201, Detroit, MI, USA
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, 101149, Tongzhou District, Beijing, China
| |
Collapse
|
3
|
Yang Y, Huang S, Wang J, Nie X, Huang L, Li T. Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:39-48. [PMID: 38154963 PMCID: PMC10762488 DOI: 10.4196/kjpp.2024.28.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023]
Abstract
Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Shan Huang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Jun Wang
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| | - Xiao Nie
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou 570311, China
| | - Ling Huang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Tianfa Li
- Department of Cardiovasology, The First Affiliated Hospital, Hainan Medical University, Haikou 570100, China
| |
Collapse
|
4
|
Wang Y, Jun Yun H, Ding Y, Du H, Geng X. Montelukast sodium protects against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization. Brain Res 2023; 1817:148498. [PMID: 37499731 DOI: 10.1016/j.brainres.2023.148498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in brain injury and repair. Regulation of post-stroke inflammation may be a reasonable strategy to treat ischemic stroke. The present study demonstrates that montelukast sodium protected brain tissue by regulating the post-stroke inflammatory reaction. METHODS Adult male mice underwent distal occlusion of the middle cerebral artery (d-MCAO) surgery, followed by intraperitoneal injection of montelukast sodium or equivalent saline, from day 0-7 after the operation. On the 7th day, Rotarod and adhesive-removal test were performed. M AP2 staining, and Iba1, CD206, and CD16/32 co staining were performed. BV2 microglial cell lines were co-cultured with different concentrations of montelukast sodium with or without lipopolysaccharide (LPS). Real-time polymerase chain reaction (rt-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect the mRNA expression of M1 and M2 phenotypic microglia markers and the release of cytokines representing from different phenotypes of microglia cells. RESULTS Montelukast sodium prolonged the time that d-MCAO mice remained on the rotating bar, shortened the time to remove the sticker on the opposite claw, and reduced the infarct volume, promoting the transformation of microglial cells/macrophages around the infarct to the M2 phenotype. Montelukast sodium increased the mRNA expression of Arg-1, CD206, TGF-β, and IL-10 in BV2 microglial cell lines stimulated by LPS, while decreased the expression of iNOS, TNF-α, and CD16/32. CONCLUSION Montelukast sodium can protect against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Tong Y, Ding Y, Han Z, Duan H, Geng X. Optimal rehabilitation strategies for early postacute stroke recovery: An ongoing inquiry. Brain Circ 2023; 9:201-204. [PMID: 38284113 PMCID: PMC10821682 DOI: 10.4103/bc.bc_33_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 01/30/2024] Open
Abstract
Early rehabilitation is crucial in reducing stroke-related disability, but the optimal training model remains unclear. We conducted a trial comparing different initiation timings and intensities of mobilization strategies after stroke. Results showed that early intensive mobilization had favorable outcomes at 3 months post-stroke, while very early intensive mobilization had poorer chances of favorable outcomes. Our investigation into brain injury mechanisms induced by very early exercise within 24 hours of stroke onset aligned with guidelines advising against high-dose very early mobilization. Additionally, we are studying the effects of various exercise intensities and frequencies on early stroke rehabilitation. Integrated rehabilitation models, such as combining remote ischemic conditioning (RIC) with exercise (RICE), hold promise. Our study found RICE to be safe and feasible for early rehabilitation of acute ischemic stroke patients, and further research is underway to determine its efficacy in a larger sample size. Despite extensive research, identifying the most effective early recovery strategies remains a complex challenge, necessitating ongoing work in the field of early rehabilitation after stroke.
Collapse
Affiliation(s)
- Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhenzhen Han
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Fehsel K. Why Is Iron Deficiency/Anemia Linked to Alzheimer's Disease and Its Comorbidities, and How Is It Prevented? Biomedicines 2023; 11:2421. [PMID: 37760862 PMCID: PMC10526115 DOI: 10.3390/biomedicines11092421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Impaired iron metabolism has been increasingly observed in many diseases, but a deeper, mechanistic understanding of the cellular impact of altered iron metabolism is still lacking. In addition, deficits in neuronal energy metabolism due to reduced glucose import were described for Alzheimer's disease (AD) and its comorbidities like obesity, depression, cardiovascular disease, and type 2 diabetes mellitus. The aim of this review is to present the molecular link between both observations. Insufficient cellular glucose uptake triggers increased ferritin expression, leading to depletion of the cellular free iron pool and stabilization of the hypoxia-induced factor (HIF) 1α. This transcription factor induces the expression of the glucose transporters (Glut) 1 and 3 and shifts the cellular metabolism towards glycolysis. If this first line of defense is not adequate for sufficient glucose supply, further reduction of the intracellular iron pool affects the enzymes of the mitochondrial electron transport chain and activates the AMP-activated kinase (AMPK). This enzyme triggers the translocation of Glut4 to the plasma membrane as well as the autophagic recycling of cell components in order to mobilize energy resources. Moreover, AMPK activates the autophagic process of ferritinophagy, which provides free iron urgently needed as a cofactor for the synthesis of heme- and iron-sulfur proteins. Excessive activation of this pathway ends in ferroptosis, a special iron-dependent form of cell death, while hampered AMPK activation steadily reduces the iron pools, leading to hypoferremia with iron sequestration in the spleen and liver. Long-lasting iron depletion affects erythropoiesis and results in anemia of chronic disease, a common condition in patients with AD and its comorbidities. Instead of iron supplementation, drugs, diet, or phytochemicals that improve energy supply and cellular glucose uptake should be administered to counteract hypoferremia and anemia of chronic disease.
Collapse
Affiliation(s)
- Karin Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich-Heine-University, 240629 Düsseldorf, Germany
| |
Collapse
|
7
|
Mao Y, Xu L, Xu J, Tang Y, Liu T. Application Value of Limb Ischemic Preconditioning in Preventing Intradialytic Hypotension during Maintenance Hemodialysis. Kidney Blood Press Res 2023; 48:535-544. [PMID: 37497943 PMCID: PMC10614484 DOI: 10.1159/000531855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION The aim of this study was to investigate the efficacy and safety of limb ischemia preconditioning (LIPC) in the treatment of intradialytic hypotension (IDH) in patients with maintenance hemodialysis (MHD). METHODS This was a single-center, prospective, and randomized controlled case study. A total of 38 patients with MHD who met the inclusion criteria from September 2021 to August 2022 were selected from the Blood Purification Center of our hospital. They were randomly divided into the LIPC group (n = 19) and the control group (n = 19). For patients in the LIPC group, the femoral artery blood flow was blocked with an LIPC instrument for 5 min (pressurized to 200 mm Hg) before each dialysis, and they were reperfused for 5 min. The cycle was repeated five times, with a total of 50 min for 12 weeks. The control group was pressurized to 20 mm Hg with an LIPC instrument, and the rest was the same as the LIPC group. The blood pressure of 0 h, 1 h, 2 h, 3 h, 4 h, and body weight before and after hemodialysis were measured in the two groups during hemodialysis, the incidence of IDH and the changes of serum troponin I (TNI) and creatine kinase isoenzyme MB (CK-MB) levels before and after the intervention were observed, and the ultrafiltration volume and ultrafiltration rate were recorded. RESULTS At the 8th and 12th week after intervention, the MAP in the LIPC group was higher than that in the control group (103.28 ± 12.19 mm Hg vs. 93.18 ± 11.11 mm Hg, p = 0.04; 101.81 ± 11.36 mm Hg vs. 91.81 ± 11.92 mm Hg, p = 0.047). The incidence of IDH in the LIPC group was lower than that in the control group (36.5% vs. 43.1%, p = 0.01). The incidence of clinical treatment in IDH patients in the LIPC group was lower than that in the control group (6.3% vs. 12.4%, p = 0.00). The incidence of early termination of hemodialysis in the LIPC group was lower than that in the control group (1.6% vs. 3.8%, p = 0.01). The levels of TNI and CK-MB in the LIPC group after the intervention were lower than those in the control group (322.30 ± 13.72 ng/dL vs. 438.50 ± 24.72 ng/dL, p = 0.00; 159.78 ± 8.48 U/dL vs. 207.00 ± 8.70 U/dL, p = 0.00). The changes of MAP before and after the intervention were negatively correlated with the changes of TNI and CK-MB before and after the intervention (r = -0.473, p = 0.04; r = -0.469, p = 0.04). There were no differences in dry body mass and ultrafiltration rate between the two groups before and after the LIPC intervention (p > 0.05). Multiple linear regression analysis shows that TNI is the main influencing factor of ΔMAP. No LIPC-related adverse events were found during the study period. CONCLUSION LIPC can effectively reduce the incidence of IDH in patients with MHD and may be associated with the alleviation of myocardial damage.
Collapse
Affiliation(s)
- Yaqin Mao
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China,
- Graduate School, Dalian Medical University, Dalian, China,
| | - Linfang Xu
- Blood Purification Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Juntian Xu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Yushang Tang
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Blood Purification Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Tongqiang Liu
- Division of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
- Blood Purification Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
8
|
Guo W, Zhao W, Li D, Jia H, Ren C, Li S, Zhao J, Yu B, Dong J, Guo R, Zhu K, Cao Y, Wang Y, Wang Y, Li Z, Wang Z, Wang D, Hou C, Hausenloy DJ, Chu X, Ji X. Chronic Remote Ischemic Conditioning on Mild Hypertension in the Absence of Antihypertensive Medication: A Multicenter, Randomized, Double-Blind, Proof-of-Concept Clinical Trial. Hypertension 2023; 80:1274-1282. [PMID: 37035920 DOI: 10.1161/hypertensionaha.122.20934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Exploratory studies have shown that remote ischemic conditioning (RIC) has the potential to lower blood pressure (BP). We investigated whether chronic RIC reduces BP for hypertension. METHODS This is a multicenter, randomized, double-blind, parallel-controlled trial. Patients with an office BP of 130/80 to 160/100 mm Hg and a 24-hour average BP ≥125/75 mm Hg not on antihypertensive medications were recruited. After a 1-week compliance screening phase, they were randomly assigned in a 1:1 ratio to receive RIC or sham RIC twice daily for 4 weeks. The primary efficacy outcome was the change in 24-hour average systolic BP from baseline to 4 weeks. Safety events were assessed over the study period. RESULTS Ninety-five participants were randomly allocated to the RIC (n=49) and sham RIC (n=46) groups. In the intention-to-treat analysis, the reduction in 24-hour average systolic BP was greater in the RIC group than the sham RIC group (-4.6±9.5 versus -0.9±6.8 mm Hg; baseline-adjusted between-group mean difference: -3.6 mm Hg [95% CI, -6.9 to -0.3 mm Hg]; adjusted P=0.035). The per-protocol analysis showed that 24-hour average systolic BP reduced -5.9±8.6 mm Hg in the RIC group and -0.7±6.7 mm Hg in the sham RIC group (baseline-adjusted between-group mean difference: -5.2 mm Hg [95% CI, -8.5 to -1.9 mm Hg]; adjusted P=0.002). No major adverse events were reported in both groups. CONCLUSIONS RIC is safe in patients with mild hypertension and may lower BP in the absence of antihypertensive medications. However, the effects of RIC on clinical outcomes in these patients require further investigation. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04915313.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Neurology (W.G., W.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology (W.G., W.Z.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (W.Z., C.R., Yan Wang), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Li
- Peking University Care Health Management Center, Beijing, China (D.L., Ying Wang, Z.L.)
| | - Haiying Jia
- Health Management Center, The 306 Hospital of People's Liberation Army, Beijing, China (H.J., Z.W., D.W.)
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (W.Z., C.R., Yan Wang), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Department of Emergency (S.L.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bingxin Yu
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Dong
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rongfen Guo
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Zhu
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Cao
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine (W.Z., C.R., Yan Wang), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Peking University Care Health Management Center, Beijing, China (D.L., Ying Wang, Z.L.)
| | - Zunshan Li
- Peking University Care Health Management Center, Beijing, China (D.L., Ying Wang, Z.L.)
| | - Zhen Wang
- Health Management Center, The 306 Hospital of People's Liberation Army, Beijing, China (H.J., Z.W., D.W.)
| | - Dan Wang
- Health Management Center, The 306 Hospital of People's Liberation Army, Beijing, China (H.J., Z.W., D.W.)
| | - Chengbei Hou
- Center for Evidence-Based Medicine (C.H.), Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School (D.J.H.)
- National Heart Research Institute Singapore, National Heart Centre (D.J.H.)
- Yong Loo Lin School of Medicine, National University Singapore (D.J.H.)
| | - Xi Chu
- Health Management Center (J.Z., B.Y., J.D., R.G., K.Z., Y.C., X.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery (X.J.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Xu Y, Wang Y, Ji X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ 2023; 9:77-87. [PMID: 37576576 PMCID: PMC10419737 DOI: 10.4103/bc.bc_57_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 08/15/2023] Open
Abstract
The benefits of remote ischemic conditioning (RIC) on multiple organs have been extensively investigated. According to existing research, suppressing the immune inflammatory response is an essential mechanism of RIC. Based on the extensive effects of RIC on cardiovascular and cerebrovascular diseases, this article reviews the immune and inflammatory mechanisms of RIC and summarizes the effects of RIC on immunity and inflammation from three perspectives: (1) the mechanisms of the impact of RIC on inflammation and immunity; (2) evidence of the effects of RIC on immune and inflammatory processes in ischaemic stroke; and (3) possible future applications of this effect, especially in systemic infectious diseases such as sepsis and sepsis-associated encephalopathy. This review explores the possibility of using RIC as a treatment in more inflammation-related diseases, which will provide new ideas for the treatment of this kind of disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Li X, Ren C, Li S, Zhao W, Wang P, Ji X. The antihypertensive effect of remote ischemic conditioning in spontaneously hypertensive rats. Front Immunol 2023; 13:1093262. [PMID: 36713422 PMCID: PMC9878686 DOI: 10.3389/fimmu.2022.1093262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Purpose Limb remote ischemic conditioning (LRIC) may be an effective method to control hypertension. This study investigated whether LRIC decreases blood pressure by regulating the hypertensive inflammatory response in spontaneously hypertensive rats (SHR). Method The SHR and aged-matched Wistar rats with different ages were randomly assigned to the SHR group, SHR+LRIC group, Wistar group, and Wistar + LRIC group. LRIC was conducted by tightening a tourniquet around the upper thigh and releasing it for three cycles daily (10 mins x3 cycles). Blood pressure, the percentage of monocytes and T lymphocytes, and the concentration of pro-inflammatory cytokines in the blood were analyzed. Results The blood pressure of SHR was significantly higher than that of age-matched Wistar rats. LRIC decreased blood pressure in SHR at different ages (4, 8, and 16 weeks old), but had no effect on the blood pressure in Wistar rats. Flow cytometry analysis showed that blood monocytes and CD8 T cells of SHR were higher than those of Wistar rats. LRIC significantly decreased the percentage of monocytes and CD8 T cells in SHR. Consistent with the changes of immune cells, the levels of plasma IL-6 and TNF-α in SHR were also higher. And LRIC attenuated the plasma IL-6 and TNF-α levels in SHR. Conclusion LRIC may decreased the blood pressure via modulation of the inflammatory response in SHR.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Neurology, Aerospace center Hospital, Beijing, China
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Peifu Wang
- Department of Neurology, Aerospace center Hospital, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Li F, Geng X, Ilagan R, Bai S, Chen Y, Ding Y. Exercise postconditioning reduces ischemic injury via suppression of cerebral gluconeogenesis in rats. Brain Behav 2023; 13:e2805. [PMID: 36448290 PMCID: PMC9847623 DOI: 10.1002/brb3.2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
Pre-stroke exercise conditioning reduces neurovascular injury and improves functional outcomes after stroke. The goal of this study was to explore if post-stroke exercise conditioning (PostE) reduced brain injury and whether it was associated with the regulation of gluconeogenesis. Adult rats received 2 h of middle cerebral artery (MCA) occlusion, followed by 24 h of reperfusion. Treadmill activity was then initiated 24 h after reperfusion for PostE. The severity of the brain damage was determined by infarct volume, apoptotic cell death, and neurological deficit at one and three days after reperfusion. We measured gluconeogenesis including oxaloacetate (OAA), phosphoenolpyruvate (PEP), pyruvic acid, lactate, ROS, and glucose via ELISA, as well as the location and expression of the key enzyme phosphoenolpyruvate carboxykinase (PCK)-1/2 via immunofluorescence. We also determined upstream pathways including forkhead transcription factor (FoxO1), p-FoxO1, 3-kinase (PI3K)/Akt, and p-PI3K/Akt via Western blot. Additionally, the cytoplasmic expression of p-FoxO1 was detected by immunofluorescence. Compared to non-exercise control, PostE (*p < .05) decreased brain infarct volumes, neurological deficits, and cell death at one and three days. PostE groups (*p < .05) saw increases in OAA and decreases in PEP, pyruvic acid, lactate, ROS, glucose levels, and tissue PCKs expression on both days. PCK-1/2 expressions were also significantly (*p < .05) suppressed by the exercise setting. Additionally, phosphorylated PI3K, AKT, and FoxO1 protein expression were significantly induced by PostE at one and three days (*p < .05). In this study, PostE reduced brain injury after stroke, in association with activated PI3K/AKT/FoxO1 signaling, and inhibited gluconeogenesis. These results suggest the involvement of FoxO1 regulation of gluconeogenesis underlying post-stroke neuroprotection.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roxanne Ilagan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shangying Bai
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuhua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
12
|
Tong Y, Lee H, Kohls W, Han Z, Duan H, Cheng Z, Li F, Gao J, Liu J, Geng X, Ding Y. Remote ischemic conditioning (RIC) with exercise (RICE) is safe and feasible for acute ischemic stroke (AIS) patients. Front Neurol 2022; 13:981498. [PMID: 36457864 PMCID: PMC9706098 DOI: 10.3389/fneur.2022.981498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Rehabilitation is essential in reducing stroke disability and should be performed as early as possible. Exercise is an established and effective rehabilitation method; however, its implementation has been limited as its very early use exacerbates cerebral injury and is restricted by patients' unstable conditions and disabilities. Remote ischemic conditioning (RIC) is a passive and accessible therapy in acute phases of stroke and appears to have similar neuroprotective effects as exercise. This study assessed the safety and feasibility of the novel rehabilitation strategy-early RIC followed by exercise (RICE) in acute ischemic stroke (AIS). METHODS We conducted a single-center, double-blinded, randomized controlled trial with AIS patients within 24 h of stroke onset or symptom exacerbation. All enrolled patients were randomly assigned, at a ratio of 1:1, to either the RICE group or the sham-RICE group (sham RIC with exercise). Each group received either RIC or sham RIC within 24 h after stroke onset or symptom exacerbation, once a day, for 14 days. Both groups started the exercise routine on day 4, twice daily, for 11 total days. The safety endpoints included clinical deterioration, recurrence of stroke, hemorrhagic transformation, complications, and adverse events resulting from RICE during hospitalization. The efficacy endpoints [Modified Rankin Scale (mRS) score, National Institutes of Health Stroke Scale (NIHSS) score, Barthel Index, and walking ability] were evaluated at admission and 90 days after stroke onset. RESULTS Forty AIS patients were recruited and completed the study. No significant differences in baseline characteristics were found between the two groups, which included risk factors, stroke severity at admission, pre-morbid disability, and other special treatments. No significant differences were found in the safety endpoints between two groups. Excellent recovery (mRS 0-2) at 3 months was obtained in 55% of the patients with RICE as compared 40% in sham group, but it did not reach a significant level. CONCLUSIONS RICE was safe and feasible for AIS patients, and seems to be a promising early stroke rehabilitation. The results of this study suggest a need for a future randomized and controlled multicenter trial with a larger sample size to determine the efficacy of RICE.
Collapse
Affiliation(s)
- Yanna Tong
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Wesley Kohls
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhenzhen Han
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Honglian Duan
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fenghai Li
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jing Liu
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
BmooMPα-I, a Metalloproteinase Isolated from Bothrops moojeni Venom, Reduces Blood Pressure, Reverses Left Ventricular Remodeling and Improves Cardiac Electrical Conduction in Rats with Renovascular Hypertension. Toxins (Basel) 2022; 14:toxins14110766. [PMID: 36356016 PMCID: PMC9697896 DOI: 10.3390/toxins14110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BmooMPα-I has kininogenase activity, cleaving kininogen releasing bradykinin and can hydrolyze angiotensin I at post-proline and aspartic acid positions, generating an inactive peptide. We evaluated the antihypertensive activity of BmooMPα-I in a model of two-kidney, one-clip (2K1C). Wistar rats were divided into groups: Sham, who underwent sham surgery, and 2K1C, who suffered stenosis of the right renal artery. In the second week of hypertension, we started treatment (Vehicle, BmooMPα-I and Losartan) for two weeks. We performed an electrocardiogram and blood and heart collection in the fourth week of hypertension. The 2K1C BmooMPα-I showed a reduction in blood pressure (systolic pressure: 131 ± 2 mmHg; diastolic pressure: 84 ± 2 mmHg versus 174 ± 3 mmHg; 97 ± 4 mmHg, 2K1C Vehicle, p < 0.05), improvement in electrocardiographic parameters (Heart Rate: 297 ± 4 bpm; QRS: 42 ± 0.1 ms; QT: 92 ± 1 ms versus 332 ± 6 bpm; 48 ± 0.2 ms; 122 ± 1 ms, 2K1C Vehicle, p < 0.05), without changing the hematological profile (platelets: 758 ± 67; leukocytes: 3980 ± 326 versus 758 ± 75; 4400 ± 800, 2K1C Vehicle, p > 0.05), with reversal of hypertrophy (left ventricular area: 12.1 ± 0.3; left ventricle wall thickness: 2.5 ± 0.2; septum wall thickness: 2.3 ± 0.06 versus 10.5 ± 0.3; 2.7 ± 0.2; 2.5 ± 0.04, 2K1C Vehicle, p < 0.05) and fibrosis (3.9 ± 0.2 versus 7.4 ± 0.7, 2K1C Vehicle, p < 0.05). We concluded that BmooMPα-I improved blood pressure levels and cardiac remodeling, having a cardioprotective effect.
Collapse
|
14
|
Di YL, Yu Y, Zhao SJ, Huang N, Fei XC, Yao DD, Ai L, Lyu JH, He RQ, Li JJ, Tong ZQ. Formic acid induces hypertension-related hemorrhage in hSSAO TG in mice and human. Exp Neurol 2022; 358:114208. [PMID: 35988700 DOI: 10.1016/j.expneurol.2022.114208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
Hypertension is a confirmed risk factor for cerebral hemorrhage in humans. Which endogenous factor directly induces hypertension-related hemorrhage is unclear. In this study, 42 hemorrhagic patients with hypertension and hyperlipidemia and 42 age-matched healthy controls were enrolled. The contents of serum semicarbazide-sensitive amine oxidase (SSAO) and formic acid (FC, FC is a final product of SSAO through the oxidation of endogenous formaldehyde, which results from the enzymatic oxidative deamination of the SSAO substrate, methylamine) were examined in the patients after stroke. Hemorrhagic areas were quantified by computer tomography. In the animal study, hemorrhagic degree was assessed by hemotoxylin & eosin or tissue hemoglobin kits. The relationship between FC and blood pressure/hemorrhagic degree was examined in wild-type mice and hSSAOTG mice fed with high-fat diets or high-fat and -salt diets. The results showed that the levels of serum FC were positively correlated with blood pressure and hemorrhagic areas in hemorrhagic patients. Transfection of microRNA-134 could enhance SSAO expression in human vascular smooth muscle cells. Consistently, after treatment with high-fat and -salt diets, hSSAOTG mice exhibited higher levels of miR134 and FC, higher blood pressure, and more severe hemorrhage than wild-type mice. Interestingly, folic acid reduced hypertension and hemorrhage in hSSAOTG mice fed with high-fat diets. These findings suggest that FC is a crucial endogenous factor for hypertension and hemorrhage.
Collapse
Affiliation(s)
- Ya-Lan Di
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Oujiang Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Sheng-Jie Zhao
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Nayan Huang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Xue-Chao Fei
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-Dan Yao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Li Ai
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ji-Hui Lyu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Rong-Qiao He
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Li
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing Boai Hospital, Beijing, China
| | - Zhi-Qian Tong
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health, Oujiang Laboratory, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Ji Q, Wang X, Zhao W, Wills M, Yun HJ, Tong Y, Cai L, Geng X, Ding Y. Effects of remote ischemic conditioning on sleep complaints in Parkinson's disease-rationale, design, and protocol for a randomized controlled study. Front Neurol 2022; 13:932199. [PMID: 35959392 PMCID: PMC9359623 DOI: 10.3389/fneur.2022.932199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Sleep disturbances are common non-motor symptoms of Parkinson's disease. The symptoms affect the quality of patients' life by impeding normal sleep cycles and causing excessive daytime sleepiness. Remote Ischemic Conditioning (RIC) is a therapy often used for ischemic stroke patients to minimize infarct size and maximize post-stroke neurological function. Animal experiments have shown that RIC plays a protective role for retinal ganglion cells and other critical areas of the brain of Parkinson's disease. However, whether RIC improves excessive daytime sleepiness (EDS) for patients with Parkinson's disease remains to be determined. METHODS This is a single-center, double-blind, and randomized controlled trial, which includes patients with Parkinson's disease with EDS. All recruited patients will be randomly assigned either to the RIC or the control group (i.e., sham-RIC) with 20 patients in each group. Both groups receive RIC or sham-RIC treatment once a day for 28 days within 24 h of enrollment. Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Parkinson Disease Sleep Scale-2 (PDSS-2), Parkinson's Disease Questionnaire39 (PDQ39) score scales, and adverse events, such as inability to tolerate the treatment leading to suspension of the study or objective signs of tissue or neurovascular injury caused by RIC and/or sham-RIC are evaluated at 7, 14, 28, and 90 days after enrollment. RESULTS The primary goal of this study is to assess the feasibility of the treatments in patients with Parkinson's disease by measuring serious RIC-related adverse events and any reduced incidence of adverse events during the trial and to study potential efficacy, improvement of patients' excessive daytime sleepiness, quality of life-based on ESS, PSQI, PDSS-2, and PDQ39 scores. The secondary goal is to confirm the safety of the treatments. CONCLUSION This study is a prospective randomized controlled trial to determine the safety, feasibility, and potential efficacy of RIC for patients with Parkinson's disease associated with EDS.
Collapse
Affiliation(s)
- Qiling Ji
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
16
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
17
|
Yan Y, Mao M, Li YQ, Chen YJ, Yu HD, Xie WZ, Huang Q, Leng WD, Xiong J. Periodontitis Is Associated With Heart Failure: A Population-Based Study (NHANES III). Front Physiol 2022; 13:854606. [PMID: 35514329 PMCID: PMC9065405 DOI: 10.3389/fphys.2022.854606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The aim of this study was to investigate the relationship between periodontitis and heart failure using the Third National Health and Nutrition Examination Survey (NHANES III). Methods: Participants who had received a periodontal examination were included and investigated for the occurrence of heart failure. The included participants were divided into no/mild periodontitis and moderate/severe periodontitis groups according to their periodontal status. Weighted prevalence of heart failure was calculated, and weighted logistic regressions models were used to explore the association between periodontitis and heart failure. Possible influencing factors were then explored through subgroup analysis. Results: Compared with that of the no/mild periodontitis group, the incidence of heart failure in participants with moderate/severe periodontitis was 5.72 times higher (95% CI: 3.76-8.72, p < 0.001). After adjusting for gender, age, race, body mass index, poverty income ratio, education, marital status, smoking status, drinking status, hypertension, diabetes, stroke, and asthma, the results showed that the incidence of heart failure in the moderate/severe group was 3.03 times higher (95% CI: 1.29-7.13, p = 0.012). Subgroup analysis showed that criteria, namely, male, 40-60 years old, non-Hispanic white, body mass index >30, poverty income ratio ≥1, not more than 12 years of education, currently drinking, stroke but no diabetes, or asthma supported moderate/severe periodontitis as a risk factor for heart failure (p < 0.05). Conclusion: According to data from this nationally representative sample from the United States, periodontitis is associated with an increased risk of heart failure.
Collapse
Affiliation(s)
- Yan Yan
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Mao
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Qin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yong-Ji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - He-Dong Yu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen-Zhong Xie
- Department of Stomatology, Kaifeng University Health Science Center, Kaifeng, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Dong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jie Xiong
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Remote ischemic conditioning causes CD4 T cells shift towards reduced cell-mediated inflammation. Pediatr Surg Int 2022; 38:657-664. [PMID: 35244771 DOI: 10.1007/s00383-022-05093-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is a gastrointestinal disease in neonates that is associated with immune-mediated intestinal inflammation. Remote ischemic conditioning (RIC) applied to a limb has been shown to be protective against experimental NEC. In this study, we explore the immune cell-mediated response involved in NEC and the immunomodulatory effects of RIC in an experimental mouse model of the disease. METHODS NEC was induced in C57BL/6 mice (ethical approval #58119) pups on postnatal day5 (p5) using gavage hyperosmolar formula, lipopolysaccharide, and hypoxia. RIC consisted of 4 cycles of 5 min ischemia followed by 5 min reperfusion of the right hindlimb during NEC induction on p6 and p8. Breastfed mice were used as control. The mice were sacrificed on p9, with ileal tissue evaluated for inflammatory cytokines and by characterization of T-cell populations. RESULTS NEC mice had increased number of CD4+ cells indicating an accumulation of T-cells in the mesenchyme of the NEC ileum. Compared to control, NEC pups had upregulated expression pro-inflammatory cytokines (GATA3, IFNγ, IL1β, IL6, IL17, IL22, and TNFα) and reduced anti-inflammatory cytokine (TGFβ). In NEC, there was also a shift in the balance of Treg/Th17 cells towards Th17. Compared to NEC alone, RIC during the course of NEC resulted in reduction of pro-inflammatory cytokines (GATA3, IFNγ, IL1β, IL6, IL17, IL22, and TNFα), increase in anti-inflammatory cytokine TGFβ and concomitant shift back of Th17 cells towards Treg cells. CONCLUSION In experimental NEC, remote ischemic conditioning reduces the production of pro-inflammatory markers and increases the production of anti-inflammatory markers. In addition, during NEC, RIC reverses the imbalance of Treg/Th17 providing support for its effect on cell-mediated inflammation. RIC is a non-invasive physical maneuver that can have a significant beneficial effect in reducing the inflammation seen in NEC.
Collapse
|
19
|
Xu J, Zhang Q, Rajah GB, Zhao W, Wu F, Ding Y, Zhang B, Guo W, Yang Q, Xing X, Li S, Ji X. Daily Remote Ischemic Conditioning Can Improve Cerebral Perfusion and Slow Arterial Progression of Adult Moyamoya Disease—A Randomized Controlled Study. Front Neurol 2022; 12:811854. [PMID: 35185755 PMCID: PMC8850829 DOI: 10.3389/fneur.2021.811854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeMoyamoya disease (MMD) is a complicated cerebrovascular disease with recurrent ischemic or hemorrhagic events. This study aimed to prove the safety and efficacy of remote ischemic conditioning (RIC) on MMD.MethodsIn total, 34 patients with MMD participated in this pilot, prospective randomized controlled study for 1 year. 18 patients were allocated into the RIC group, and 16 patients accepted routine medical treatment only. RIC-related adverse events were recorded. The primary outcome was the improvement ratio of mean cerebral blood flow (mCBF) in middle cerebral artery territory measured by multidelay pseudocontinuous arterial spin labeling, and the secondary outcomes were the cumulative incidence of major adverse cerebrovascular events (MACEs), the prevalence of stenotic-occlusive progression, and periventricular anastomosis at 1-year follow-up.ResultsIn total, 30 of the 34 patients with MMD completed the final follow-up (17 in the RIC group and 13 in the control group). No adverse events of RIC were observed. The mCBF improvement ratio of the RIC group was distinctively higher compared with the control group (mCBF−whole-brain: 0.16 ± 0.15 vs. −0.03 ± 0.13, p = 0.001). Stenotic-occlusive progression occurred in 11.8% hemispheres in the RIC group and 38.5% in the control group (p = 0.021). The incidence of MACE was 5.9% in the RIC group and 30.8% in the control group (hazard ratio with RIC, 0.174; 95% CI, 0.019–1.557; p = 0.118). No statistical difference was documented in the periventricular anastomosis between the two groups after treatment.ConclusionsRemote ischemic conditioning has the potential to be a safe and effective adjunctive therapy for patients with MMD largely due to improving cerebral blood flow and slowing the arterial progression of the stenotic-occlusive lesions. These findings warrant future studies in larger trials.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gary B. Rajah
- Department of Neurosurgery, Wayne State University, Detroit, MI, United States
- Department of Neurosurgery, Munson Medical Center, Traverse City, MI, United States
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Fang Wu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, United States
| | - Bowei Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenting Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiurong Xing
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Sijie Li
| | - Xunming Ji
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| |
Collapse
|
20
|
Guo W, Ren C, Zhang B, Zhao W, Gao Y, Yu W, Ji X. Chronic Limb Remote Ischemic Conditioning may have an Antihypertensive Effect in Patients with Hypertension. Aging Dis 2021; 12:2069-2079. [PMID: 34881086 PMCID: PMC8612623 DOI: 10.14336/ad.2021.0604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the leading preventable risk factor for all-cause morbidity and mortality worldwide. Despite antihypertensive medications have been available for decades, a big challenge we are facing is to increase the blood pressure (BP) control rate among the population. Therefore, it is necessary to search for new antihypertensive means to reduce the burden of disease caused by hypertension. Limb remote ischemic conditioning (LRIC) can trigger endogenous protective effects through transient and repeated ischemia on the limb to protect specific organs and tissues including the brain, heart, and kidney. The mechanisms of LRIC involve the regulation of the autonomic nervous system, releasing humoral factors, improvement of vascular endothelial function, and modulation of immune/inflammatory responses. These underlying mechanisms of LRIC may restrain the pathogenesis of hypertension through multiple pathways theoretically, leading to a potential decline in BP. Several existing studies have explored the impact of LRIC on BP, however, controversial findings were reported. To explore the potential antihypertensive effect of LRIC and the underlying mechanisms, we systematically reviewed the relevant articles to provide an insight into the novel therapy of hypertension.
Collapse
Affiliation(s)
- Wenting Guo
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- 2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Bowei Zhang
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China
| | - Yu Gao
- 5Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wantong Yu
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,4Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Xu R, He Q, Wang Y, Yang Y, Guo ZN. Therapeutic Potential of Remote Ischemic Conditioning in Vascular Cognitive Impairment. Front Cell Neurosci 2021; 15:706759. [PMID: 34413726 PMCID: PMC8370253 DOI: 10.3389/fncel.2021.706759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a heterogeneous disease caused by a variety of cerebrovascular diseases. Patients with VCI often present with slower cognitive processing speed and poor executive function, which affects their independence in daily life, thus increasing social burden. Remote ischemic conditioning (RIC) is a non-invasive and efficient intervention that triggers endogenous protective mechanisms to generate neuroprotection. Over the past decades, evidence from basic and clinical research has shown that RIC is promising for the treatment of VCI. To further our understanding of RIC and improve the management of VCI, we summarize the evidence on the therapeutic potential of RIC in relation to the risk factors and pathobiologies of VCI, including reducing the risk of recurrent stroke, decreasing high blood pressure, improving cerebral blood flow, restoring white matter integrity, protecting the neurovascular unit, attenuating oxidative stress, and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Rui Xu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Qianyan He
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yan Wang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China.,China National Comprehensive Stroke Center, Changchun, China.,Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
22
|
Melton E, Qiu H. Interleukin-1β in Multifactorial Hypertension: Inflammation, Vascular Smooth Muscle Cell and Extracellular Matrix Remodeling, and Non-Coding RNA Regulation. Int J Mol Sci 2021; 22:8639. [PMID: 34445357 PMCID: PMC8395428 DOI: 10.3390/ijms22168639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
The biological activities of interleukins, a group of circulating cytokines, are linked to the immuno-pathways involved in many diseases. Mounting evidence suggests that interleukin-1β (IL-1β) plays a significant role in the pathogenesis of various types of hypertension. In this review, we summarized recent findings linking IL-1β to systemic arterial hypertension, pulmonary hypertension, and gestational hypertension. We also outlined the new progress in elucidating the potential mechanisms of IL-1β in hypertension, focusing on it's regulation in inflammation, vascular smooth muscle cell function, and extracellular remodeling. In addition, we reviewed recent studies that highlight novel findings examining the function of non-coding RNAs in regulating the activity of IL-1β and its associated proteins in the setting of hypertension. The information collected in this review provides new insights into understanding the pathogenesis of hypertension and could lead to the discovery of new anti-hypertensive therapies to combat this highly prevalent disease.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|