1
|
Heemskerk T, van de Kamp G, Rovituso M, Kanaar R, Essers J. Enhanced radiosensitivity of head and neck cancer cells to proton therapy via hyperthermia-induced homologous recombination deficiency. Clin Transl Radiat Oncol 2025; 51:100898. [PMID: 39720467 PMCID: PMC11665703 DOI: 10.1016/j.ctro.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Background and purpose Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation. Materials and methods In this study, we examined the response of FaDu cells, a head and neck squamous cell carcinoma model, to spread-out Bragg peak (SOBP) proton and photon radiation combined with mild hyperthermia (42 °C for one hour) to induce homologous recombination deficiency or NHEJ inhibition by AZD7648. Results Hyperthermia resulted in stronger radiosensitization after proton radiation (SR = 1.53) compared to photon radiation (SR = 1.32). Conversely, NHEJ inhibition did not produce a significant differential effect between photon and proton radiation. This indicates a greater reliance on homologous recombination following proton radiation compared to photon radiation. We found that the number of DSBs formed after photon versus proton irradiation is comparable. Interestingly, the homologous recombination protein Rad51 accumulated more frequently at DSBs following proton irradiation than photon irradiation. Conclusions These findings support the hypothesis that cells rely more on homologous recombination to repair proton-induced DNA damage compared to photon-induced DNA damage. As clinically applied hyperthermia enhances the therapeutic effect of photon irradiation by, among other factors, inducing homologous recombination deficiency, our results suggests that hyperthermia could be more effective in combination with proton irradiation than photon irradiation.
Collapse
Affiliation(s)
- Tim Heemskerk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the)
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the)
| | | | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the)
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the)
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands (the)
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands (the)
| |
Collapse
|
2
|
Garrett J, Metzger E, Dewhirst MW, Pollok KE, Turchi JJ, Le Poole IC, Couch K, Lew L, Sinn A, Zaleski JM, Dynlacht JR. Characterization and initial demonstration of in vivo efficacy of a novel heat-activated metalloenediyne anti-cancer agent. Int J Hyperthermia 2022; 39:405-413. [PMID: 35236209 PMCID: PMC9612397 DOI: 10.1080/02656736.2021.2024280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Enediynes are anti-cancer agents that are highly cytotoxic due to their propensity for low thermal activation of radical generation. The diradical intermediate produced from Bergman cyclization of the enediyne moiety may induce DNA damage and cell lethality. The cytotoxicity of enediynes and difficulties in controlling their thermal cyclization has limited their clinical use. We recently showed that enediyne toxicity at 37 °C can be mitigated by metallation, but cytotoxic effects of ‘metalloenediynes’ on cultured tumor cells are potentiated by hyperthermia. Reduction of cytotoxicity at normothermia suggests metalloenediynes will have a large therapeutic margin, with cell death occurring primarily in the heated tumor. Based on our previous in vitro findings, FeSO4-PyED, an Fe co-factor complex of (Z)-N,N׳-bis[1-pyridin-2-yl-meth-(E)-ylidene]oct-4-ene-2,6-diyne-1,8-diamine, was prioritized for further in vitro and in vivo testing in normal human melanocytes and melanoma cells. Methods: Clonogenic survival, apopotosis and DNA binding assays were used to determine mechanisms of enhancement of FeSO4-PyED cytotoxicity by hyperthermia. A murine human melanoma xenograft model was used to assess in vivo efficacy of FeSO4-PyED at 37 or 42.5 °C. Results: FeSO4-PyED is a DNA-binding compound. Enhancement of FeSO4-PyED cytotoxicity by hyperthermia in melanoma cells was due to Bergman cyclization, diradical formation, and increased apoptosis. Thermal enhancement, however, was not observed in melanocytes. FeSO4-PyED inhibited tumor growth when melanomas were heated during drug treatment, without inducing normal tissue damage. Conclusion: By leveraging the unique thermal activation properties of metalloenediynes, we propose that localized moderate hyperthermia can be used to confine the cytotoxicity of these compounds to tumors, while sparing normal tissue.
Collapse
Affiliation(s)
- Joy Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erin Metzger
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Karen E Pollok
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Kira Couch
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Logan Lew
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony Sinn
- In Vivo Therapeutics Core, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Present Practice of Radiative Deep Hyperthermia in Combination with Radiotherapy in Switzerland. Cancers (Basel) 2022; 14:cancers14051175. [PMID: 35267486 PMCID: PMC8909523 DOI: 10.3390/cancers14051175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Moderate hyperthermia is a potent and evidence-based radiosensitizer. Several indications are reimbursed for the combination of deep hyperthermia with radiotherapy (dHT+RT). We evaluated the current practice of dHT+RT in Switzerland. METHODS All indications presented to the national hyperthermia tumor board for dHT between January 2017 and June 2021 were evaluated and treatment schedules were analyzed using descriptive statistics. RESULTS Of 183 patients presented at the hyperthermia tumor board, 71.6% were accepted and 54.1% (99/183) finally received dHT. The most commonly reimbursed dHT indications were "local recurrence and compression" (20%), rectal (14.7%) and bladder (13.7%) cancer, respectively. For 25.3% of patients, an individual request for insurance cover was necessary. 47.4% of patients were treated with curative intent; 36.8% were in-house patients and 63.2% were referred from other hospitals. CONCLUSIONS Approximately two thirds of patients were referred for dHT+RT from external hospitals, indicating a general demand for dHT in Switzerland. The patterns of care were diverse with respect to treatment indication. To the best of our knowledge, this study shows for the first time the pattern of care in a national cohort treated with dHT+RT. This insight will serve as the basis for a national strategy to evaluate and expand the evidence for dHT.
Collapse
|
4
|
Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries. Cancers (Basel) 2022; 14:cancers14020315. [PMID: 35053479 PMCID: PMC8774274 DOI: 10.3390/cancers14020315] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Loco-regional hyperthermia at 40-44 °C is a multifaceted therapeutic modality with the distinct triple advantage of being a potent radiosensitizer, a chemosensitizer and an immunomodulator. Risk difference estimates from pairwise meta-analysis have shown that the local tumour control could be improved by 22.3% (p < 0.001), 22.1% (p < 0.001) and 25.5% (p < 0.001) in recurrent breast cancers, locally advanced cervix cancer (LACC) and locally advanced head and neck cancers, respectively by adding hyperthermia to radiotherapy over radiotherapy alone. Furthermore, thermochemoradiotherapy in LACC have shown to reduce the local failure rates by 10.1% (p = 0.03) and decrease deaths by 5.6% (95% CI: 0.6-11.8%) over chemoradiotherapy alone. As around one-third of the cancer cases in low-middle-income group countries belong to breast, cervix and head and neck regions, hyperthermia could be a potential game-changer and expected to augment the clinical outcomes of these patients in conjunction with radiotherapy and/or chemotherapy. Further, hyperthermia could also be a cost-effective therapeutic modality as the capital costs for setting up a hyperthermia facility is relatively low. Thus, the positive outcomes evident from various phase III randomized trials and meta-analysis with thermoradiotherapy or thermochemoradiotherapy justifies the integration of hyperthermia in the therapeutic armamentarium of clinical management of cancer, especially in low-middle-income group countries.
Collapse
|
5
|
Singh P, Eley J, Saeed A, Bhandary B, Mahmood N, Chen M, Dukic T, Mossahebi S, Rodrigues DB, Mahmood J, Vujaskovic Z, Shukla HD. Effect of hyperthermia and proton beam radiation as a novel approach in chordoma cells death and its clinical implication to treat chordoma. Int J Radiat Biol 2021; 97:1675-1686. [PMID: 34495790 DOI: 10.1080/09553002.2021.1976861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Chordoma is a locally aggressive tumor that most commonly affects the base of the skull/clivus, cervical, and sacral spine. Conventional radiotherapy (RT), cannot be safely increased further to improve disease control due to the risk of toxicity to the surrounding critical structures. Tumor-targeted hyperthermia (HT) combined with Proton Beam Radiation Therapy (PBRT) is known to act as a potent radiosensitizer in cancer control. In this study, we investigated whether PBRT efficacy for chordoma can be enhanced in combination with HT as a radiosensitizer. MATERIAL AND METHODS Human chordoma cell lines, U-CH2 and Mug-chor1 were treated in vitro with HT followed by PBRT with variable doses. The colony-forming assay was performed, and dose-response was characterized by linear-quadratic model fits. HSP-70 and Brachyury (TBXT) biomarkers for chordoma aggression levels were quantified by western blot analysis. Gene microarray analysis was performed by U133 Arrays. Pathway Analysis was also performed using IPA bioinformatic software. RESULTS Our findings in both U-CH2 and Mug-Chor1 cell lines demonstrate that hyperthermia followed by PBRT has an enhanced cell killing effect when compared with PBRT-alone (p < .01). Western blot analysis showed HT decreased the expression of Brachyury protein (p < .05), which is considered a biomarker for chordoma tumor aggression. HT with PBRT also exhibited an RT-dose-dependent decrease of Brachyury expression (p < .05). We also observed enhanced HSP-70 expression due to HT, RT, and HT + RT combined in both cell lines. Interestingly, genomic data showed 344 genes expressed by the treatment of HT + RT compared to HT (68 genes) or RT (112 genes) as individual treatment. We also identified activation of death receptor and apoptotic pathway in HT + RT treated cells. CONCLUSION We found that Hyperthermia (HT) combined with Proton Beam Radiation (PBRT) could significantly increase chordoma cell death by activating the death receptor pathway and apoptosis which has the promise to treat metastatic chordoma.
Collapse
Affiliation(s)
- Prerna Singh
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Ali Saeed
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nayab Mahmood
- College of Information Science, University of Maryland College Park, MD, USA
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sina Mossahebi
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dario B Rodrigues
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hem D Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Sci Rep 2021; 11:5503. [PMID: 33750833 PMCID: PMC7970926 DOI: 10.1038/s41598-021-84620-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Recent technological advances in the clinical application has revitalized hyperthermia treatment (HT) as an option to improve radiotherapy (RT) outcomes. Understanding the synergistic effect of simultaneous thermoradiotherapy via mathematical modelling is essential for treatment planning. We here propose a theoretical model in which the thermal enhancement ratio (TER) relates to the cell fraction being radiosensitised by the infliction of sublethal damage through HT. Further damage finally kills the cell or abrogates its proliferative capacity in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our findings point towards an improved definition of thermal dose in concordance with the thermodynamics of protein denaturation. Our predictions well reproduce experimental in vitro and in vivo data, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.
Collapse
|
7
|
Datta NR, Marder D, Datta S, Meister A, Puric E, Stutz E, Rogers S, Eberle B, Timm O, Staruch M, Riesterer O, Bodis S. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC). Int J Hyperthermia 2021; 38:296-307. [PMID: 33627018 DOI: 10.1080/02656736.2021.1875060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thermal dose in clinical hyperthermia reported as cumulative equivalent minutes (CEM) at 43 °C (CEM43) and its variants are based on direct thermal cytotoxicity assuming Arrhenius 'break' at 43 °C. An alternative method centered on the actual time-temperature plot during each hyperthermia session and its prognostic feasibility is explored. METHODS AND MATERIALS Patients with bladder cancer treated with weekly deep hyperthermia followed by radiotherapy were evaluated. From intravesical temperature (T) recordings obtained every 10 secs, the area under the curve (AUC) was computed for each session for T > 37 °C (AUC > 37 °C) and T ≥ 39 °C (AUC ≥ 39 °C). These along with CEM43, CEM43(>37 °C), CEM43(≥39 °C), Tmean, Tmin and Tmax were evaluated for bladder tumor control. RESULTS Seventy-four hyperthermia sessions were delivered in 18 patients (median: 4 sessions/patient). Two patients failed in the bladder. For both individual and summated hyperthermia sessions, the Tmean, CEM43, CEM43(>37 °C), CEM43(≥39 °C), AUC > 37 °C and AUC ≥ 39 °C were significantly lower in patients who had a local relapse. Individual AUC ≥ 39 °C for patients with/without local bladder failure were 105.9 ± 58.3 °C-min and 177.9 ± 58.0 °C-min, respectively (p = 0.01). Corresponding summated AUC ≥ 39 °C were 423.7 ± 27.8 °C-min vs. 734.1 ± 194.6 °C-min (p < 0.001), respectively. The median AUC ≥ 39 °C for each hyperthermia session in patients with bladder tumor control was 190 °C-min. CONCLUSION AUC ≥ 39 °C for each hyperthermia session represents the cumulative time-temperature distribution at clinically defined moderate hyperthermia in the range of 39 °C to 45 °C. It is a simple, mathematically computable parameter without any prior assumptions and appears to predict treatment outcome as evident from this study. However, its predictive ability as a thermal dose parameter merits further evaluation in a larger patient cohort.
Collapse
Affiliation(s)
- Niloy R Datta
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Dietmar Marder
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Sneha Datta
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Andreas Meister
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Emsad Puric
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Emanuel Stutz
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Susanne Rogers
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Brigitte Eberle
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Olaf Timm
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Michal Staruch
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Stephan Bodis
- Department of Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Switzerland
| |
Collapse
|
8
|
Brero F, Albino M, Antoccia A, Arosio P, Avolio M, Berardinelli F, Bettega D, Calzolari P, Ciocca M, Corti M, Facoetti A, Gallo S, Groppi F, Guerrini A, Innocenti C, Lenardi C, Locarno S, Manenti S, Marchesini R, Mariani M, Orsini F, Pignoli E, Sangregorio C, Veronese I, Lascialfari A. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. NANOMATERIALS 2020; 10:nano10101919. [PMID: 32993001 PMCID: PMC7600442 DOI: 10.3390/nano10101919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022]
Abstract
A combination of carbon ions/photons irradiation and hyperthermia as a novel therapeutic approach for the in-vitro treatment of pancreatic cancer BxPC3 cells is presented. The radiation doses used are 0–2 Gy for carbon ions and 0–7 Gy for 6 MV photons. Hyperthermia is realized via a standard heating bath, assisted by magnetic fluid hyperthermia (MFH) that utilizes magnetic nanoparticles (MNPs) exposed to an alternating magnetic field of amplitude 19.5 mTesla and frequency 109.8 kHz. Starting from 37 °C, the temperature is gradually increased and the sample is kept at 42 °C for 30 min. For MFH, MNPs with a mean diameter of 19 nm and specific absorption rate of 110 ± 30 W/gFe3o4 coated with a biocompatible ligand to ensure stability in physiological media are used. Irradiation diminishes the clonogenic survival at an extent that depends on the radiation type, and its decrease is amplified both by the MNPs cellular uptake and the hyperthermia protocol. Significant increases in DNA double-strand breaks at 6 h are observed in samples exposed to MNP uptake, treated with 0.75 Gy carbon-ion irradiation and hyperthermia. The proposed experimental protocol, based on the combination of hadron irradiation and hyperthermia, represents a first step towards an innovative clinical option for pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Brero
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| | - Martin Albino
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Antonio Antoccia
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Paolo Arosio
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Matteo Avolio
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Berardinelli
- Dipartimento di Scienze and INFN, Università Roma Tre, 00146 Roma, Italy; (A.A.); (F.B.)
| | - Daniela Bettega
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Paola Calzolari
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Mario Ciocca
- Fondazione CNAO, 27100 Pavia, Italy; (M.C.); (A.F.)
| | - Maurizio Corti
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | | | - Salvatore Gallo
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Flavia Groppi
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Andrea Guerrini
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Lenardi
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
- C.I.Ma.I.Na., Centro Interdisciplinare Materiali e Interfacce Nanostrutturati, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Simone Manenti
- Dipartimento di Fisica, Università degli Studi di Milano and INFN, Lab. LASA, 20090 Segrate (MI), Italy; (F.G.); (S.M.)
| | - Renato Marchesini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Manuel Mariani
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
| | - Francesco Orsini
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Emanuele Pignoli
- Fondazione IRCSS Istituto Nazionale dei tumori, 20133 Milano, Italy;
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy; (M.A.); (A.G.); (C.I.); (C.S.)
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Ivan Veronese
- Dipartimento di Fisica and INFN, Università degli Studi di Milano, 20133 Milano, Italy; (P.A.); (D.B.); (P.C.); (S.G.); (C.L.); (S.L.); (R.M.); (F.O.); (I.V.)
| | - Alessandro Lascialfari
- Dipartimento di Fisica and INFN, Università degli Studi di Pavia, 27100 Pavia, Italy; (M.A.); (M.C.); (M.M.)
- Correspondence: (F.B.); (A.L.); Tel.: +39-0382-987-483 (F.B. & A.L.)
| |
Collapse
|
9
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
10
|
Datta NR, Bodis S. Hyperthermia with photon radiotherapy is thermoradiobiologically analogous to neutrons for tumors without enhanced normal tissue toxicity. Int J Hyperthermia 2020; 36:1073-1078. [PMID: 31709846 DOI: 10.1080/02656736.2019.1679895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The depth dose profiles of photons mirror those of fast neutrons. However, in contrast to the high linear energy transfer (LET) characteristics of neutrons; photons exhibit low LET features. Hyperthermia (HT) inhibits the repair of radiation-induced DNA damage and is cytotoxic to the radioresistant hypoxic tumor cells. Thus, thermoradiobiologically, HT simulates high LET radiation with photons. At temperatures of 39-45 °C, the physiological vasodilation allows rapid heat dissipation from normal tissues. On the contrary, the chaotic and relatively rigid tumor vasculature results in heat retention leading to higher intratumoural temperatures. Consequently, the high LET attributes of HT with photon radiations are mostly limited to the confines of the heated tumor while the normothermic normal tissues would be irradiated with low LET photons. HT thereby augments photon therapy by conferring therapeutic advantages of high LET radiations to the tumors akin to neutrons, while the 'heat-sink' effect spares the normal tissues from thermal radiosensitization. Thus, photon thermoradiotherapy imparts radiobiological advantages selectively to tumors analogous to neutrons without exaggerating normal tissue morbidities. The later has been the major concern with clinical fast neutron beam therapy. Outcomes reported from several clinical trials in diverse tumor sites add testimony to the enhanced therapeutic efficacy of photon thermoradiotherapy.
Collapse
Affiliation(s)
- Niloy Ranjan Datta
- Department of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Stephan Bodis
- Department of Radiation Oncology, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Tran S, Puric E, Walser M, Poel R, Datta NR, Heuberger J, Pica A, Marder D, Lomax N, Bolsi A, Morach P, Bachtiary B, Seddon BM, Schneider R, Bodis S, Weber DC. Early results and volumetric analysis after spot-scanning proton therapy with concomitant hyperthermia in large inoperable sacral chordomas. Br J Radiol 2020; 93:20180883. [PMID: 30943055 PMCID: PMC7066944 DOI: 10.1259/bjr.20180883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Large inoperable sacral chordomas show unsatisfactory local control rates even when treated with high dose proton therapy (PT). The aim of this study is assessing feasibility and reporting early results of patients treated with PT and concomitant hyperthermia (HT). METHODS: Patients had histologically proven unresectable sacral chordomas and received 70 Gy (relative biological effectiveness) in 2.5 Gy fractions with concomitant weekly HT. Toxicity was assessed according to CTCAE_v4. A volumetric tumor response analysis was performed. RESULTS: Five patients were treated with the combined approach. Median baseline tumor volume was 735 cc (range, 369-1142). All patients completed PT and received a median of 5 HT sessions (range, 2-6). Median follow-up was 18 months (range, 9-26). The volumetric analysis showed an objective response of all tumors (median shrinkage 46%; range, 9-72). All patients experienced acute Grade 2-3 local pain. One patient presented with a late Grade 3 iliac fracture. CONCLUSION Combining PT and HT in large inoperable sacral chordomas is feasible and causes acceptable toxicity. Volumetric analysis shows promising early results, warranting confirmation in the framework of a prospective trial. ADVANCES IN KNOWLEDGE: This is an encouraging first report of the feasibility and early results of concomitant HT and PT in treating inoperable sacral chordoma.
Collapse
Affiliation(s)
- Sebastien Tran
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Emsad Puric
- Cantonal Hospital Aarau, Radiation Oncology KSA-KSB, Aarau, Switzerland
| | - Marc Walser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Robert Poel
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | | | - Juerg Heuberger
- Cantonal Hospital Aarau, Radiation Oncology KSA-KSB, Aarau, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Dietmar Marder
- Cantonal Hospital Aarau, Radiation Oncology KSA-KSB, Aarau, Switzerland
| | - Nicoletta Lomax
- Cantonal Hospital Aarau, Radiation Oncology KSA-KSB, Aarau, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Petra Morach
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Barbara Bachtiary
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
| | - Beatrice M Seddon
- University College London Hospitals NHS Foundation Trust, London Sarcoma Service, London, United Kingdom
| | - Ralf Schneider
- Helios Medical Center Schwerin, Radiation Oncology, Schwerin, Germany
| | - Stephan Bodis
- Cantonal Hospital Aarau, Radiation Oncology KSA-KSB, Aarau, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen PSI, Switzerland
- Radiation Oncology Department, University Hospital of Zürich, Zurich, Switzerland
- Radiation Oncology Department, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Nouh SA, Gaballah N, Abou Elfadl A, Alsharif SA. MODIFICATION INDUCED BY PROTON IRRADIATION IN BAYFOL UV1 7-2 NUCLEAR TRACK DETECTOR. RADIATION PROTECTION DOSIMETRY 2019; 183:449-458. [PMID: 30215787 DOI: 10.1093/rpd/ncy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Bayfol is a class of polymeric solid state nuclear track detector which has many applications in various radiation detection fields. It is a Makrofol polycarbonate/polyester blend. Samples from Bayfol film have been irradiated with different fluences (1011-1014 p/cm2) of 1 MeV protons at the University of Surrey Ion Beam Center, UK. The resultant effect of proton irradiation on the structural and optical properties of the Bayfol samples has been investigated using X-ray diffraction, Fourier Transform Infrared and UV spectroscopy. The optical energy gap was decreased from 4.24 to 4.03 eV with increasing the proton fluence from 1011 to 1013 p/cm2, and was accompanied by an increase in the Urbach energy from 0.79 to 1.29 eV. This could be correlated to the results obtained from XRD and FTIR spectroscopy. Further, the non-irradiated Bayfol is nearly colorless. It showed significant sensitivity to color by proton irradiation, associated with an increase in the red and yellow color components. The variation of optical and color parameters with the proton fluence indicate that the dynamic range of Bayfol UV1 7-2 is in the fluence range from 1011 to 1013 p/cm2.
Collapse
Affiliation(s)
- S A Nouh
- Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - N Gaballah
- Physics Department, Faculty of Science, King Abdulaziz University, Women's Compus, Al Sulaimaniyah, Jeddah, Saudi Arabia
- Physics Department, Faculty of Science (Girls Branch), Al- Azhar University, Nasr City, Cairo, Egypt
| | - A Abou Elfadl
- Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia
- Physics Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - S A Alsharif
- Physics Department, Al-Qunfudah University College, Umm- Al Qura University, Saudi Arabia
| |
Collapse
|