1
|
Chang S, Liu G, Zhao L, Zheng W, Yan D, Chen P, Li X, Deraniyagala R, Stevens C, Grills I, Chinnaiyan P, Li X, Ding X. Introduce a rotational robust optimization framework for spot-scanning proton arc (SPArc) therapy. Phys Med Biol 2022; 68. [PMID: 36546347 DOI: 10.1088/1361-6560/aca874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
Objective. Proton dosimetric uncertainties resulting from the patient's daily setup errors in rotational directions exist even with advanced image-guided radiotherapy techniques. Thus, we developed a new rotational robust optimization SPArc algorithm (SPArcrot) to mitigate the dosimetric impact of the rotational setup error in Raystation ver. 6.02 (RaySearch Laboratory AB, Stockholm, Sweden).Approach.The initial planning CT was rotated ±5° simulating the worst-case setup error in the roll direction. The SPArcrotuses a multi-CT robust optimization framework by taking into account of such rotational setup errors. Five cases representing different disease sites were evaluated. Both SPArcoriginaland SPArcrotplans were generated using the same translational robust optimized parameters. To quantitatively investigate the mitigation effect from the rotational setup errors, all plans were recalculated using a series of pseudo-CT with rotational setup error (±1°/±2°/±3°/±5°). Dosimetric metrics such as D98% of CTV, and 3D gamma analysis were used to assess the dose distribution changes in the target and OARs.Main results.The magnitudes of dosimetric changes in the targets due to rotational setup error were significantly reduced by the SPArcrotcompared to SPArc in all cases. The uncertainties of the max dose to the OARs, such as brainstem, spinal cord and esophagus were significantly reduced using SPArcrot. The uncertainties of the mean dose to the OARs such as liver and oral cavity, parotid were comparable between the two planning techniques. The gamma passing rate (3%/3 mm) was significantly improved for CTV of all tumor sites through SPArcrot.Significance.Rotational setup error is one of the major issues which could lead to significant dose perturbations. SPArcrotplanning approach can consider such rotational error from patient setup or gantry rotation error by effectively mitigating the dose uncertainties to the target and in the adjunct series OARs.
Collapse
Affiliation(s)
- Sheng Chang
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China.,Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, People's Republic of China
| | - Lewei Zhao
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Weili Zheng
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Di Yan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Peter Chen
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiangpan Li
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Craig Stevens
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Inga Grills
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| |
Collapse
|
2
|
Taunk N. The role of proton therapy in gynecological radiation oncology. Int J Gynecol Cancer 2022; 32:414-420. [PMID: 35256431 DOI: 10.1136/ijgc-2021-002459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/06/2022] [Indexed: 11/04/2022] Open
Abstract
Proton beam therapy is an external beam radiotherapy modality that offers potentially similar efficacy and reduced toxicity compared with photon radiotherapy due to little to no exit dose of radiation beyond the intended target. Improvements in radiotherapy from two-dimensional, to three-dimensional, to intensity-modulated radiation therapy have offered comparable to improved efficacy of radiation therapy with progressive reductions in toxicity. Proton beam therapy may offer further improvements, with multiple dosimetric studies demonstrating potential reductions in exposure of normal tissue to radiation, particularly bowel and bone marrow. Proton beam therapy offers avenues for dose escalation or re-irradiation, which were previously not feasible with photon radiotherapy. Although early clinical data generally demonstrate safety, feasibility, and efficacy in a few series, prospective clinical trials are limited and needed to better define who might benefit from proton therapy. In this review, we discuss the history, dosimetry, available clinical data, and technical needs to deliver high-quality proton therapy.
Collapse
Affiliation(s)
- Neil Taunk
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|