1
|
Zhang S, Zhang S, Wang Z, Adachi T, Yoshida Y, Takahashi A. Disparity in the effect of partial gravity simulated using a new apparatus on different rat hindlimb muscles. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:54-67. [PMID: 39521495 DOI: 10.1016/j.lssr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024]
Abstract
The days of returning to the Moon and landing on Mars are approaching. These long-duration missions present significant challenges, such as changes in gravity, which pose serious threats to human health. Maintaining muscle function and health is essential for successful spaceflight and exploration of the Moon and Mars. This study aimed to observe the adaptation of rat hindlimb muscles to partial gravity conditions by simulating the gravity of space (microgravity (µG)), Moon (1/6G), and Mars (3/8G) using our recently invented ground-based apparatus. A total of 25 rats were included in this study. The rats were divided into five groups: control (1G), sham (1G), simulated Mars (3/8G), simulated Moon (1/6G), and simulated Space (µG). Muscle mass, fiber proportion, and fiber cross-sectional area (CSA) of four types of hindlimb muscles were measured: gastrocnemius (GA), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (Sol). Sol and GA exhibited the most significant alterations in response to the changes in gravity after 10 days of the experiment. A notable decline in muscle mass was observed in the simulated µG, Moon, and Mars groups, with the µG group exhibiting the most noticeable decline. In Sol, a noteworthy decline in the proportion of slow-twitch type I fibers, CSA of slow-twitch type I fibers, and average CSA of the whole muscle fibers was observed in the simulated groups. The GA red, mixed, and white portions were examined, and the GA mixed portion showed significant differences in fiber proportion and CSA. A notable increase in the proportion of slow-twitch type I fibers was observed in the simulated groups, with a significant decrease in CSA of type IIb. In EDL or TA, no discernible changes in muscle mass, fiber proportion, or fiber CSA were observed in any of the five groups. These findings indicate that weight-bearing muscles, such as Sol and GA, are more sensitive to changes in partial gravity. Furthermore, partial gravity is insufficient to preserve the normal physiological and functional properties of the hindlimb muscles. Therefore, targeted muscle interventions are required to ensure astronauts' health and mission success. Furthermore, these findings demonstrate the viability and durability of our ground-based apparatus for partial gravity simulation.
Collapse
Affiliation(s)
- Shengli Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Shenke Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Zhen Wang
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| | - Takuya Adachi
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Yukari Yoshida
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| | - Akihisa Takahashi
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
2
|
Forenzo C, Larsen J. Bridging clinical radiotherapy and space radiation therapeutics through reactive oxygen species (ROS)-triggered delivery. Free Radic Biol Med 2024; 219:88-103. [PMID: 38631648 DOI: 10.1016/j.freeradbiomed.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
This review explores the convergence of clinical radiotherapy and space radiation therapeutics, focusing on ionizing radiation (IR)-generated reactive oxygen species (ROS). IR, with high-energy particles, induces precise cellular damage, particularly in cancer treatments. The paper discusses parallels between clinical and space IR, highlighting unique characteristics of high-charge and energy particles in space and potential health risks for astronauts. Emphasizing the parallel occurrence of ROS generation in both clinical and space contexts, the review identifies ROS as a crucial factor with dual roles in cellular responses and potential disease initiation. The analysis covers ROS generation mechanisms, variations, and similarities in terrestrial and extraterrestrial environments leading to innovative ROS-responsive delivery systems adaptable for both clinical and space applications. The paper concludes by discussing applications of personalized ROS-triggered therapeutic approaches and discussing the challenges and prospects of implementing these strategies in clinical radiotherapy and extraterrestrial missions. Overall, it underscores the potential of ROS-targeted delivery for advancing therapeutic strategies in terrestrial clinical settings and space exploration, contributing to human health improvement on Earth and beyond.
Collapse
Affiliation(s)
- Chloe Forenzo
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29631, USA; Department of Bioengineering, Clemson University, Clemson, SC, 29631, USA.
| |
Collapse
|
3
|
Whitcomb LA, Cao X, Thomas D, Wiese C, Pessin AS, Zhang R, Wu JC, Weil MM, Chicco AJ. Mitochondrial reactive oxygen species impact human fibroblast responses to protracted γ-ray exposures. Int J Radiat Biol 2024; 100:890-902. [PMID: 38631047 PMCID: PMC11471570 DOI: 10.1080/09553002.2024.2338518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Purpose: Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. Methods and Materials: To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.1 Gy delivered at 0.16 mGy/min continuously over 5 days) on mitochondrial function, gene expression, and the protein secretome of human HCA2-hTERT fibroblasts in the presence and absence of a mitochondria-specific antioxidant mitoTEMPO (MT; 5 µM). Results: IR increased fibroblast mitochondrial oxygen consumption (JO2) and H2O2 release rates (JH2O2) under energized conditions, which corresponded to higher protein expression of NADPH Oxidase (NOX) 1, NOX4, and nuclear DNA-encoded subunits of respiratory chain Complexes I and III, but depleted mtDNA transcripts encoding subunits of the same complexes. This was associated with activation of gene programs related to DNA repair, oxidative stress, and protein ubiquination, all of which were attenuated by MT treatment along with radiation-induced increases in JO2 and JH2O2. IR also increased secreted levels of interleukin-8 and Type I collagens, while decreasing Type VI collagens and enzymes that coordinate assembly and remodeling of the extracellular matrix. MT treatment attenuated many of these effects while augmenting others, revealing complex effects of mtROS in fibroblast responses to IR. Conclusion: These results implicate mtROS production in fibroblast responses to protracted radiation exposure, and suggest potentially protective effects of mitochondrial-targeted antioxidants against radiogenic tissue injury in vivo.
Collapse
Affiliation(s)
- Luke A. Whitcomb
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Alissa S. Pessin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert Zhang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Michael M. Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Hattori A, Suzuki N. Receptor-Mediated and Receptor-Independent Actions of Melatonin in Vertebrates. Zoolog Sci 2024; 41:105-116. [PMID: 38587523 DOI: 10.2108/zs230057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/02/2023] [Indexed: 04/09/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indolamine that is synthesized from tryptophan in the pineal glands of vertebrates through four enzymatic reactions. Melatonin is a quite unique bioactive substance, characterized by a combination of both receptor-mediated and receptor-independent actions, which promote the diverse effects of melatonin. One of the main functions of melatonin, via its membrane receptors, is to regulate the circadian or seasonal rhythm. In mammals, light information, which controls melatonin synthesis, is received in the eye, and transmitted to the pineal gland, via the suprachiasmatic nucleus, where the central clock is located. Alternatively, in many vertebrates other than mammals, the pineal gland cells, which are involved in melatonin synthesis and secretion and in the circadian clock, directly receive light. Recently, it has been reported that melatonin possesses several metabolic functions, which involve bone and glucose, in addition to regulating the circadian rhythm. Melatonin improves bone strength by inhibiting osteoclast activity. It is also known to maintain brain activity during sleep by increasing glucose uptake at night, in an insulin-independent manner. Moreover, as a non-receptor-mediated action, melatonin has antioxidant properties. Melatonin has been proven to be a potent free radical scavenger and a broad-spectrum antioxidant, even protecting organisms against radiation from space. Melatonin is a ubiquitously distributed molecule and is found in bacteria, unicellular organisms, fungi, and plants. It is hypothesized that melatonin initially functioned as an antioxidant, then, in vertebrates, it combined this role with the ability to regulate rhythm and metabolism, via its receptors.
Collapse
Affiliation(s)
- Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama 352-8558, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan,
| |
Collapse
|
5
|
De Micco V, Aronne G, Caplin N, Carnero-Diaz E, Herranz R, Horemans N, Legué V, Medina FJ, Pereda-Loth V, Schiefloe M, De Francesco S, Izzo LG, Le Disquet I, Kittang Jost AI. Perspectives for plant biology in space and analogue environments. NPJ Microgravity 2023; 9:67. [PMID: 37604914 PMCID: PMC10442387 DOI: 10.1038/s41526-023-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Advancements in plant space biology are required for the realization of human space exploration missions, where the re-supply of resources from Earth is not feasible. Until a few decades ago, space life science was focused on the impact of the space environment on the human body. More recently, the interest in plant space biology has increased because plants are key organisms in Bioregenerative Life Support Systems (BLSS) for the regeneration of resources and fresh food production. Moreover, plants play an important role in psychological support for astronauts. The definition of cultivation requirements for the design, realization, and successful operation of BLSS must consider the effects of space factors on plants. Altered gravitational fields and radiation exposure are the main space factors inducing changes in gene expression, cell proliferation and differentiation, signalling and physiological processes with possible consequences on tissue organization and organogenesis, thus on the whole plant functioning. Interestingly, the changes at the cellular and molecular levels do not always result in organismic or developmental changes. This apparent paradox is a current research challenge. In this paper, the main findings of gravity- and radiation-related research on higher plants are summarized, highlighting the knowledge gaps that are still necessary to fill. Existing experimental facilities to simulate the effect of space factors, as well as requirements for future facilities for possible experiments to achieve fundamental biology goals are considered. Finally, the need for making synergies among disciplines and for establishing global standard operating procedures for analyses and data collection in space experiments is highlighted.
Collapse
Affiliation(s)
- Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy.
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Nicol Caplin
- SciSpacE Team, Directorate of Human and Robotic Exploration Programmes, European Space Agency (ESA), Noordwijk, Netherlands
| | - Eugénie Carnero-Diaz
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Boeretang 200, 2400, Mol, Belgium
| | - Valérie Legué
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Mona Schiefloe
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| | - Sara De Francesco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici (NA), Italy
| | - Isabel Le Disquet
- Institute of Systematic, Evolution, Biodiversity, Sorbonne University, National Museum of Natural History, CNRS, EPHE, UA, 45, rue Buffon CP50, 75005, Paris, France
| | - Ann- Iren Kittang Jost
- NTNU Social Research, Centre for Interdisciplinary Research in Space (CIRiS) Dragvoll Allé 38 B, 7049, Trondheim, Norway
| |
Collapse
|
6
|
Liddell LC, Gentry DM, Gilbert R, Marina D, Massaro Tieze S, Padgen MR, Akiyama K, Keenan K, Bhattacharya S, Santa Maria SR. BioSentinel: Validating Sensitivity of Yeast Biosensors to Deep Space Relevant Radiation. ASTROBIOLOGY 2023; 23:648-656. [PMID: 37052477 DOI: 10.1089/ast.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the imminent human exploration of deep space, it is more important than ever to understand the biological risks of deep space radiation exposure. The BioSentinel mission will be the first biological payload to study the effects of radiation beyond low Earth orbit in 50 years. This study is the last in a collection of articles about the BioSentinel biological CubeSat mission, where budding yeast cells will be used to investigate the response of a biological organism to long-term, low-dose deep space radiation. In this study, we define the methodology for detecting the biological response to space-like radiation using simulated deep space radiation and a metabolic indicator dye reduction assay. We show that there is a dose-dependent decrease in yeast cell growth and metabolism in response to space-like radiation, and this effect is significantly more pronounced in a strain of yeast that is deficient in DNA damage repair (rad51Δ) compared with a wild-type strain. Furthermore, we demonstrate the use of flight-like instrumentation after exposure to space-like ionizing radiation. Our findings will inform the development of novel and improved biosensors and technologies for future missions to deep space.
Collapse
Affiliation(s)
- Lauren C Liddell
- NASA Ames Research Center, Moffett Field, California, USA
- Logyx LLC, Mountain View, California, USA
| | - Diana M Gentry
- NASA Ames Research Center, Moffett Field, California, USA
| | - Rachel Gilbert
- NASA Ames Research Center, Moffett Field, California, USA
- FILMSS/KBR, NASA Ames Research Center, Moffett Field, California, USA
| | | | | | | | - Kylie Akiyama
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, California, USA
| | - Kyra Keenan
- Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Sergio R Santa Maria
- NASA Ames Research Center, Moffett Field, California, USA
- FILMSS/KBR, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
7
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
8
|
Borzoueisileh S, Shabestani Monfared A, Mortazavi SMJ, Zabihi E, Pouramir M, Niksirat F, Seyfizadeh N, Shafiee M. Pre-Exposure to Radiofrequency Electromagnetic Fields and Induction of Radioadaptive Response in Rats Irradiated with High Doses of X-Rays. J Biomed Phys Eng 2022; 12:505-512. [PMID: 36313415 PMCID: PMC9589077 DOI: 10.31661/jbpe.v0i0.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/30/2019] [Indexed: 11/06/2022]
Abstract
Background Some evidence shows that a pre-exposure to RF can mitigate the effects of subsequent exposures to high doses of ionizing radiation. Objective We aimed to assess the effect of a pre-exposure to non-ionizing RF radiation on survival, weight changes, food consumption, and water intake of lethally irradiated rats. Material and Methods In this case-control study, we used a commercial mobile phone (GSM, 900/1800 MHz) as well as a 2.4 GHz Wi-Fi router as the sources of pre-exposure to RF radiation. Forty-eight rats were randomly divided into six groups of control, "8 Gy X-rays", mobile phone, "mobile phone+8 Gy", Wi-Fi, and "Wi-Fi+8 Gy". Then, the survival fraction, weight loss, water, and food consumption changes were compared in different groups. Results The survival analysis indicated that the survival rates in all of the exposed animals ("8 Gy X-rays", "mobile phone+8 Gy", "Wi-Fi+8 Gy") were significantly lower than the control, "Wi-Fi", and "mobile phone" groups. The changes in survival rates of "mobile+8 Gy", "Wi-Fi+8 Gy", and 8 Gy alone were not statistically significant. However, food and water intake were significantly affected by exposure to both RF pre-exposures and exposure to high dose ionizing radiation. Conclusion To the best of our knowledge, the existence of a dose window for the induction of AR can be the cause of the lack of AR in our experiment. Our findings confirm that in a similar pattern with the adaptive responses induced by pre-exposure to ionizing radiation, the induction of adaptive response by RF-pre-exposures requires a minimum level of damage to trigger adaptive phenomena.
Collapse
Affiliation(s)
- Sajad Borzoueisileh
- MSc, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- MSc, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ali Shabestani Monfared
- PhD, Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mohammad Javad Mortazavi
- PhD, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Zabihi
- PhD, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Pouramir
- PhD, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Niksirat
- MSc, Department of Medical Physics Radiobiology and Radiation Protection, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nayer Seyfizadeh
- PhD, Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Shafiee
- MSc, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
9
|
Rosenstein AH, Walker VK. Fidelity of a Bacterial DNA Polymerase in Microgravity, a Model for Human Health in Space. Front Cell Dev Biol 2021; 9:702849. [PMID: 34912795 PMCID: PMC8666419 DOI: 10.3389/fcell.2021.702849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term space missions will expose crew members, their cells as well as their microbiomes to prolonged periods of microgravity and ionizing radiation, environmental stressors for which almost no earth-based organisms have evolved to survive. Despite the importance of maintaining genomic integrity, the impact of these stresses on DNA polymerase-mediated replication and repair has not been fully explored. DNA polymerase fidelity and replication rates were assayed under conditions of microgravity generated by parabolic flight and compared to earth-like gravity. Upon commencement of a parabolic arc, primed synthetic single-stranded DNA was used as a template for one of two enzymes (Klenow fragment exonuclease+/-; with and without proofreading exonuclease activity, respectively) and were quenched immediately following the 20 s microgravitational period. DNA polymerase error rates were determined with an algorithm developed to identify experimental mutations. In microgravity Klenow exonuclease+ showed a median 1.1-fold per-base decrease in polymerization fidelity for base substitutions when compared to earth-like gravity (p = 0.02), but in the absence of proofreading activity, a 2.4-fold decrease was observed (p = 1.98 × 10-11). Similarly, 1.1-fold and 1.5-fold increases in deletion frequencies in the presence or absence of exonuclease activity (p = 1.51 × 10-7 and p = 8.74 × 10-13), respectively, were observed in microgravity compared to controls. The development of this flexible semi-autonomous payload system coupled with genetic and bioinformatic approaches serves as a proof-of-concept for future space health research.
Collapse
Affiliation(s)
- Aaron H Rosenstein
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
10
|
Sihver L, Mortazavi SMJ. Biological Protection in Deep Space Missions. J Biomed Phys Eng 2021; 11:663-674. [PMID: 34904063 PMCID: PMC8649166 DOI: 10.31661/jbpe.v0i0.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/20/2019] [Indexed: 01/15/2023]
Abstract
During deep space missions, astronauts are exposed to highly ionizing radiation, incl. neutrons, protons and heavy ions from galactic cosmic rays (GCR), solar wind (SW) and solar energetic particles
(SEP). This increase the risks for cancerogenisis, damages in central nervous system (CNS), cardiovascular diseases, etc. Large SEP events can even cause acute radiation syndrome (ARS).
Long term manned deep space missions will therefor require unique radiation protection strategies. Since it has been shown that physical shielding alone is not sufficient, this paper
propose pre-flight screening of the aspirants for evaluation of their level of adaptive responses. Methods for boosting their immune system, should also be further investigated,
and the possibility of using radiation effect modulators are discussed. In this paper, especially, the use of vitamin C as a promising non-toxic, cost-effective, easily available
radiation mitigator (which can be used hours after irradiation), is described. Although it has previously been shown that vitamin C can decrease radiation-induced chromosomal damage in rodents,
it must be further investigated before any conclusions about its radiation mitigating properties in humans can be concluded.
Collapse
Affiliation(s)
- Lembit Sihver
- PhD, Department of Radiation Physics, Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- PhD, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | |
Collapse
|
11
|
Wang L, Cao Z, Sun W, Feng C, Li C, Xia L, An Q. Prototype readout electronics of a double-sided silicon strip detector for space exploration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114707. [PMID: 34852564 DOI: 10.1063/5.0067083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Double-sided silicon strip detectors (DSSDs) have been widely used in interplanetary exploration. In this study, the prototype readout electronics of a DSSD for space exploration is presented. It mainly includes a front-end readout module (FEM) and a data acquisition module (DAM). The FEM is responsible for acquiring the charge of the DSSD signals based on an application-specific integrated circuit and polarity inverter circuits. The DAM with a field programmable gate array is employed to perform online calculations of the position and energy as well as data packaging and transfer. Test results show that the electronics has dynamic ranges of 6-2500 and -6 to -2500 fC with an integral nonlinearity of no more than 0.5%, while the root-mean-square noise level is less than 1.9 fC. Joint tests with the DSSD indicate that a full width at half maximum energy resolution of 3.25% at 5.486 MeV and a position resolution of 1.19 mm were achieved.
Collapse
Affiliation(s)
- Li Wang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Cao
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China
| | - Wenrui Sun
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Changqing Feng
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Chunjuan Li
- National Key Laboratory for Metrology and Calibration Techniques, China Institute of Atomic Energy, Beijing 102400, China
| | - Li Xia
- National Key Laboratory for Metrology and Calibration Techniques, China Institute of Atomic Energy, Beijing 102400, China
| | - Qi An
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
13
|
Takahashi A, Yamanouchi S, Takeuchi K, Takahashi S, Tashiro M, Hidema J, Higashitani A, Adachi T, Zhang S, Guirguis FNL, Yoshida Y, Nagamatsu A, Hada M, Takeuchi K, Takahashi T, Sekitomi Y. Combined Environment Simulator for Low-Dose-Rate Radiation and Partial Gravity of Moon and Mars. Life (Basel) 2020; 10:life10110274. [PMID: 33172150 PMCID: PMC7694743 DOI: 10.3390/life10110274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Deep space exploration by humans has become more realistic, with planned returns to the Moon, travel to Mars, and beyond. Space radiation with a low dose rate would be a constant risk for space travelers. The combined effects of space radiation and partial gravity such as on the Moon and Mars are unknown. The difficulty for such research is that there are no good simulating systems on the ground to investigate these combined effects. To address this knowledge gap, we developed the Simulator of the environments on the Moon and Mars with Neutron irradiation and Gravity change (SwiNG) for in vitro experiments using disposable closed cell culture chambers. The device simulates partial gravity using a centrifuge in a three-dimensional clinostat. Six samples are exposed at once to neutrons at a low dose rate (1 mGy/day) using Californium-252 in the center of the centrifuge. The system is compact including two SwiNG devices in the incubator, one with and one without radiation source, with a cooling function. This simulator is highly convenient for ground-based biological experiments because of limited access to spaceflight experiments. SwiNG can contribute significantly to research on the combined effects of space radiation and partial gravity.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
- Correspondence: ; Tel.: +81-27-220-7917
| | - Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Kazuomi Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Shogo Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Jun Hidema
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Takuya Adachi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Shenke Zhang
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Fady Nagy Lotfy Guirguis
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Kunihito Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Tohru Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Yuji Sekitomi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
- Material Solutions Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
14
|
Oryema B, Jurua E, Madiba IG, Nkosi M, Sackey J, Maaza M. Effects of low-dose γ-irradiation on the structural, morphological, and optical properties of fluorine-doped tin oxide thin films. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020; 10:life10110264. [PMID: 33143156 PMCID: PMC7693761 DOI: 10.3390/life10110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Collapse
|
16
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
17
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
18
|
Kamada M, Oka M, Miyamoto K, Uheda E, Yamazaki C, Shimazu T, Sano H, Kasahara H, Suzuki T, Higashibata A, Ueda J. Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport". LIFE SCIENCES IN SPACE RESEARCH 2020; 26:55-61. [PMID: 32718687 DOI: 10.1016/j.lssr.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
This paper introduces the use of microarray data technology with Medicago (Medicago truncatula) microarrays to characterize global changes in the transcript abundance of etiolated Alaska pea (Pisum sativum L.) seedlings grown under microgravity (µg) conditions in comparison with those under artificial 1 g conditions on the International Space Station. Of the 44,000 genes of the Medicago microarray platform, more than 25,000 transcripts of pea seedlings were hybridized, suggesting that the microarray platform for Medicago could be useful in the study of gene expression of etiolated pea seedlings grown under µg conditions in space. Gene array data were analyzed according to stringent criteria that restricted the scored genes for specific hybridization values at least twofold. Expression of 1362 and 1558 genes in proximal side (the proximal side) and distal side of the epicotyl to the cotyledons (the distal side), respectively, were highly affected by µg conditions in space. Of the genes analyzed, 407 of 1362 transcripts in the proximal side and 740 of 1558 transcripts in the distal side were expressed at ratios at least twofold. However, in the presence of the auxin transport inhibitor TIBA, 212 of 399 transcripts and 255 of 477 transcripts were expressed at ratios at least twofold as high in the proximal and the distal sides of epicotyls in the seedlings grown under µg conditions, respectively. Based on Venn diagram analysis, 31 transcripts and 24 transcripts were found to commonly increase and decrease, respectively, under µg conditions in space. Venn analysis revealed six auxin-related genes and three water channel AQUAPORIN genes that were responsive to gravity. Among 6 auxin-related genes, the accumulation of transcripts of Auxin-induced protein 5NG4 and Indole-3-acetic acid-amido synthetase GH3.3 tended to increase, and that of Auxin-induced protein, Auxin response factor, SAUR-like auxin-responsive family protein and Auxin response factor tended to decrease under µg conditions, whereas there were no statistic differences between under µg and artificial 1 g conditions. Similarly there were no statistic differences between under µg conditions and artificial 1 g, but the accumulation of NIP3-1 and Plasma membrane intrinsic protein11, and AQUAPORIN1/Tonoplast intrinsic protein tended to increase and decrease, respectively. A possible role of auxin-related genes and AQUAPORIN genes in regulating growth of etiolated pea seedlings grown under µg conditions in space is discussed.
Collapse
Affiliation(s)
- Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan.
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Yamazaki
- JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg., 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Haruo Kasahara
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Tomomi Suzuki
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
19
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
20
|
Bevelacqua JJ, Mortazavi SMJ. Comments on ‘Cardiovascular effects of space radiation: Implications for future human deep space exploration’. Eur J Prev Cardiol 2019; 26:1897-1898. [DOI: 10.1177/2047487319840169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|