1
|
Bosart K, Petreaca RC, Bouley RA. In silico analysis of several frequent SLX4 mutations appearing in human cancers. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001216. [PMID: 38828439 PMCID: PMC11143449 DOI: 10.17912/micropub.biology.001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
SLX4 is an interactor and activator of structure-specific exonuclease that helps resolve tangled recombination intermediates arising at stalled replication forks. It is one of the many factors that assist with homologous recombination, the major mechanism for restarting replication. SLX4 mutations have been reported in many cancers but a pan cancer map of all the mutations has not been undertaken. Here, using data from the Catalogue of Somatic Mutations in Cancers (COSMIC), we show that mutations occur in almost every cancer and many of them truncate the protein which should severely alter the function of the enzyme. We identified a frequent R1779W point mutation that occurs in the SLX4 domain required for heterodimerization with its partner, SLX1. In silico protein structure analysis of this mutation shows that it significantly alters the protein structure and is likely to destabilize the interaction with SLX1. Although this brief communication is limited to only in silico analysis, it identifies certain high frequency SLX4 mutations in human cancers that would warrant further in vivo studies. Additionally, these mutations may be potentially actionable for drug therapies.
Collapse
Affiliation(s)
- Korey Bosart
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
| | - Ruben C Petreaca
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States
- Molecular Genetics, The Ohio State University at Marion, Marion, Ohio, United States
| | - Renee A Bouley
- Chemistry and Biochemistry, The Ohio State University at Marion, Marion, Ohio, United States
| |
Collapse
|
2
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
3
|
Cytogenetics in Fanconi Anemia: The Importance of Follow-Up and the Search for New Biomarkers of Genomic Instability. Int J Mol Sci 2022; 23:ijms232214119. [PMID: 36430597 PMCID: PMC9699043 DOI: 10.3390/ijms232214119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a disease characterized by genomic instability, increased sensitivity to DNA cross-linking agents, and the presence of clonal chromosomal abnormalities. This genomic instability can compromise the bone marrow (BM) and confer a high cancer risk to the patients, particularly in the development of Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). The diagnosis of FA patients is complex and cannot be based only on clinical features at presentation. The gold standard diagnostic assay for these patients is cytogenetic analysis, revealing chromosomal breaks induced by DNA cross-linking agents. Clonal chromosome abnormalities, such as the ones involving chromosomes 1q, 3q, and 7, are also common features in FA patients and are associated with progressive BM failure and/or a pre-leukemia condition. In this review, we discuss the cytogenetic methods and their application in diagnosis, stratification of the patients into distinct prognostic groups, and the clinical follow-up of FA patients. These methods have been invaluable for the understanding of FA pathogenesis and identifying novel disease biomarkers. Additional evidence is required to determine the association of these biomarkers with prognosis and cancer risk, and their potential as druggable targets for FA therapy.
Collapse
|
4
|
Abstract
Common fragile sites (CFSs) are large chromosomal regions that exhibit breakage on metaphase chromosomes upon replication stress. They become preferentially unstable at the early stage of cancer development and are hotspots for chromosomal rearrangements in cancers. Increasing evidence has highlighted the complexity underlying the instability of CFSs, and a combination of multiple mechanisms is believed to cause CFS fragility. We will review recent advancements in our understanding of the molecular mechanisms underlying the maintenance of CFS stability and the relevance of CFSs to cancer-associated genome instability. We will emphasize the contribution of the structure-prone AT-rich sequences to CFS instability, which is in line with the recent genome-wide study showing that structure-forming repeat sequences are principal sites of replication stress.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, San Diego, CA 92037 USA
| |
Collapse
|
5
|
Hoogenboom WS, Boonen RACM, Knipscheer P. The role of SLX4 and its associated nucleases in DNA interstrand crosslink repair. Nucleic Acids Res 2019; 47:2377-2388. [PMID: 30576517 PMCID: PMC6411836 DOI: 10.1093/nar/gky1276] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
A key step in the Fanconi anemia pathway of DNA interstrand crosslink (ICL) repair is the ICL unhooking by dual endonucleolytic incisions. SLX4/FANCP is a large scaffold protein that plays a central role in ICL unhooking. It contains multiple domains that interact with many proteins including three different endonucleases and also acts in several other DNA repair pathways. While it is known that its interaction with the endonuclease XPF-ERCC1 is required for its function in ICL repair, which other domains act in this process is unclear. Here, we used Xenopus egg extracts to determine ICL repair specific features of SLX4. We show that the SLX4-interacting endonuclease SLX1 is not required for ICL repair and demonstrate that all essential SLX4 domains are located at the N-terminal half of the protein. The MLR domain is crucial for the recruitment of XPF-ERCC1 but also has an unanticipated function in recruiting SLX4 to the site of damage. Although we find the BTB is not essential for ICL repair in our system, dimerization of SLX4 could be important. Our data provide new insights into the mechanism by which SLX4 acts in ICL repair.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick A C M Boonen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
8
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
9
|
Wyatt HDM, Laister RC, Martin SR, Arrowsmith CH, West SC. The SMX DNA Repair Tri-nuclease. Mol Cell 2017; 65:848-860.e11. [PMID: 28257701 PMCID: PMC5344696 DOI: 10.1016/j.molcel.2017.01.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
The efficient removal of replication and recombination intermediates is essential for the maintenance of genome stability. Resolution of these potentially toxic structures requires the MUS81-EME1 endonuclease, which is activated at prometaphase by formation of the SMX tri-nuclease containing three DNA repair structure-selective endonucleases: SLX1-SLX4, MUS81-EME1, and XPF-ERCC1. Here we show that SMX tri-nuclease is more active than the three individual nucleases, efficiently cleaving replication forks and recombination intermediates. Within SMX, SLX4 co-ordinates the SLX1 and MUS81-EME1 nucleases for Holliday junction resolution, in a reaction stimulated by XPF-ERCC1. SMX formation activates MUS81-EME1 for replication fork and flap structure cleavage by relaxing substrate specificity. Activation involves MUS81's conserved N-terminal HhH domain, which mediates incision site selection and SLX4 binding. Cell cycle-dependent formation and activation of this tri-nuclease complex provides a unique mechanism by which cells ensure chromosome segregation and preserve genome integrity.
Collapse
Affiliation(s)
- Haley D M Wyatt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rob C Laister
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen C West
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
10
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
11
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
12
|
Yin J, Wan B, Sarkar J, Horvath K, Wu J, Chen Y, Cheng G, Wan K, Chin P, Lei M, Liu Y. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex. Nucleic Acids Res 2016; 44:4871-80. [PMID: 27131364 PMCID: PMC4889959 DOI: 10.1093/nar/gkw354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022] Open
Abstract
The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance.
Collapse
Affiliation(s)
- Jinhu Yin
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Bingbing Wan
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China Shanghai Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jaya Sarkar
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Kent Horvath
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Jian Wu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China
| | - Yong Chen
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China
| | - Guangjuan Cheng
- Shanghai Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wan
- Shanghai Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peiju Chin
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Ming Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 333 Haike Road, Shanghai 200031, China Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA Shanghai Research Center, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| |
Collapse
|
13
|
Cussiol JR, Dibitetto D, Pellicioli A, Smolka MB. Slx4 scaffolding in homologous recombination and checkpoint control: lessons from yeast. Chromosoma 2016; 126:45-58. [PMID: 27165041 DOI: 10.1007/s00412-016-0600-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
Homologous recombination-mediated DNA repair is essential for maintaining genome integrity. It is a multi-step process that involves resection of DNA ends, strand invasion, DNA synthesis and/or DNA end ligation, and finally, the processing of recombination intermediates such as Holliday junctions or other joint molecules. Over the last 15 years, it has been established that the Slx4 protein plays key roles in the processing of recombination intermediates, functioning as a scaffold to coordinate the action of structure-specific endonucleases. Recent work in budding yeast has uncovered unexpected roles for Slx4 in the initial step of DNA-end resection and in the modulation of DNA damage checkpoint signaling. Here we review these latest findings and discuss the emerging role of yeast Slx4 as an important coordinator of DNA damage signaling responses and a regulator of multiple steps in homologous recombination-mediated repair.
Collapse
Affiliation(s)
- José R Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
14
|
Sarkar J, Liu Y. Fanconi anemia proteins in telomere maintenance. DNA Repair (Amst) 2016; 43:107-12. [PMID: 27118469 DOI: 10.1016/j.dnarep.2016.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/15/2022]
Abstract
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell.
Collapse
Affiliation(s)
- Jaya Sarkar
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging/National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21044, USA.
| |
Collapse
|
15
|
Kim M, Kim JM. The role of USP1 autocleavage in DNA interstrand crosslink repair. FEBS Lett 2016; 590:340-8. [DOI: 10.1002/1873-3468.12060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mira Kim
- Department of Pharmacology; Medical Research Center for Gene Regulation; Chonnam National University Medical School; Gwangju Korea
| | - Jung Min Kim
- Department of Pharmacology; Medical Research Center for Gene Regulation; Chonnam National University Medical School; Gwangju Korea
| |
Collapse
|
16
|
Dibitetto D, Ferrari M, Rawal CC, Balint A, Kim T, Zhang Z, Smolka MB, Brown GW, Marini F, Pellicioli A. Slx4 and Rtt107 control checkpoint signalling and DNA resection at double-strand breaks. Nucleic Acids Res 2015; 44:669-82. [PMID: 26490958 PMCID: PMC4737138 DOI: 10.1093/nar/gkv1080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
The DNA damage checkpoint pathway is activated in response to DNA lesions and replication stress to preserve genome integrity. However, hyper-activation of this surveillance system is detrimental to the cell, because it might prevent cell cycle re-start after repair, which may also lead to senescence. Here we show that the scaffold proteins Slx4 and Rtt107 limit checkpoint signalling at a persistent double-strand DNA break (DSB) and at uncapped telomeres. We found that Slx4 is recruited within a few kilobases of an irreparable DSB, through the interaction with Rtt107 and the multi-BRCT domain scaffold Dpb11. In the absence of Slx4 or Rtt107, Rad9 binding near the irreparable DSB is increased, leading to robust checkpoint signalling and slower nucleolytic degradation of the 5′ strand. Importantly, in slx4Δ sae2Δ double mutant cells these phenotypes are exacerbated, causing a severe Rad9-dependent defect in DSB repair. Our study sheds new light on the molecular mechanism that coordinates the processing and repair of DSBs with DNA damage checkpoint signalling, preserving genome integrity.
Collapse
Affiliation(s)
- Diego Dibitetto
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Matteo Ferrari
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Chetan C Rawal
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | - Attila Balint
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S3E1, Canada Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - TaeHyung Kim
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada Department of Computer Science, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada Department of Computer Science, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S3E1, Canada Donnelly Centre, University of Toronto, Toronto, Ontario, M5S3E1, Canada
| | - Federica Marini
- Department of Biosciences, University of Milan, 20133, Milano, Italy
| | | |
Collapse
|
17
|
Jo U, Kim H. Exploiting the Fanconi Anemia Pathway for Targeted Anti-Cancer Therapy. Mol Cells 2015; 38:669-76. [PMID: 26194820 PMCID: PMC4546938 DOI: 10.14348/molcells.2015.0175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Genome instability, primarily caused by faulty DNA repair mechanisms, drives tumorigenesis. Therapeutic interventions that exploit deregulated DNA repair in cancer have made considerable progress by targeting tumor-specific alterations of DNA repair factors, which either induces synthetic lethality or augments the efficacy of conventional chemotherapy and radiotherapy. The study of Fanconi anemia (FA), a rare inherited blood disorder and cancer predisposition syndrome, has been instrumental in understanding the extent to which DNA repair defects contribute to tumorigenesis. The FA pathway functions to resolve blocked replication forks in response to DNA interstrand cross-links (ICLs), and accumulating knowledge of its activation by the ubiquitin-mediated signaling pathway has provided promising therapeutic opportunities for cancer treatment. Here, we discuss recent advances in our understanding of FA pathway regulation and its potential application for designing tailored therapeutics that take advantage of deregulated DNA ICL repair in cancer.
Collapse
Affiliation(s)
- Ukhyun Jo
- Department of Pharmacological Sciences, Stony Brook University, New York 11794,
USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, New York 11794,
USA
| |
Collapse
|
18
|
Guervilly JH, Gaillard PHL. SLX4 gains weight with SUMO in genome maintenance. Mol Cell Oncol 2015; 3:e1008297. [PMID: 27308578 DOI: 10.1080/23723556.2015.1008297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/31/2022]
Abstract
Replication stress has emerged as a key driver of oncogenesis but also represents an Achilles' heel of cancer cells. Newly reported SUMO binding and SUMO ligase functions of the DNA repair protein SLX4 that influence the outcome of replication stress open new avenues for investigating the roles played by SLX4 in tumorigenesis.
Collapse
Affiliation(s)
- Jean-Hugues Guervilly
- Centre de Recherche en Cancérologie de Marseille, Inserm, U1068, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, F-13009, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, Inserm, U1068, Institut Paoli-Calmettes; Aix-Marseille Université UM 105; CNRS UMR 7258, Marseille, F-13009, France
| |
Collapse
|