1
|
Xie S, Yang Y, Jin Z, Liu X, Zhang S, Su N, Liu J, Li C, Zhang D, Gao L, Yang Z. Mouse KL2 is a unique MTSE involved in chromosome-based spindle organization and regulated by multiple kinases during female meiosis. J Biomed Res 2024; 38:1-15. [PMID: 38808565 PMCID: PMC11461529 DOI: 10.7555/jbr.37.20230290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of KL2 significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
Collapse
Affiliation(s)
- Shiya Xie
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanjie Yang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaocong Liu
- Laboratory Department of Shihezi People's Hospital, Shihezi, Xinjiang 832099, China
| | - Shuping Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning Su
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Liu
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congrong Li
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Leilei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhixia Yang
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
2
|
Chan KK, Abdul-Sater Z, Sheth A, Mitchell DK, Sharma R, Edwards DM, He Y, Nalepa G, Rhodes SD, Clapp DW, Sierra Potchanant EA. SIK2 kinase synthetic lethality is driven by spindle assembly defects in FANCA-deficient cells. Mol Oncol 2021; 16:860-884. [PMID: 34058059 PMCID: PMC8847993 DOI: 10.1002/1878-0261.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
The Fanconi anemia (FA) pathway safeguards genomic stability through cell cycle regulation and DNA damage repair. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established, but their function in mitosis is incompletely understood. Here, we performed a kinome-wide synthetic lethality screen in FANCA-/- fibroblasts, which revealed multiple mitotic kinases as necessary for survival of FANCA-deficient cells. Among these kinases, we identified the depletion of the centrosome kinase SIK2 as synthetic lethal upon loss of FANCA. We found that FANCA colocalizes with SIK2 at multiple mitotic structures and regulates the activity of SIK2 at centrosomes. Furthermore, we found that loss of FANCA exacerbates cell cycle defects induced by pharmacological inhibition of SIK2, including impaired G2-M transition, delayed mitotic progression, and cytokinesis failure. In addition, we showed that inhibition of SIK2 abrogates nocodazole-induced prometaphase arrest, suggesting a novel role for SIK2 in the spindle assembly checkpoint. Together, these findings demonstrate that FANCA-deficient cells are dependent upon SIK2 for survival, supporting a preclinical rationale for targeting of SIK2 in FA-disrupted cancers.
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zahi Abdul-Sater
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditya Sheth
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K Mitchell
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richa Sharma
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donna M Edwards
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying He
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grzegorz Nalepa
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven D Rhodes
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
3
|
Spastin interacts with CRMP5 to promote spindle organization in mouse oocytes by severing microtubules. ZYGOTE 2021; 30:80-91. [PMID: 34034836 DOI: 10.1017/s0967199421000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
Collapse
|
4
|
Affiliation(s)
- Helena E. Richardson
- Cell Cycle and Development Laboratory, Research Division, Peter MacCallum Cancer Centre, 7 St Andrew's place, East Melbourne, Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, 7 St Andrew's place, East Melbourne, Melbourne, Victoria, 3002, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, 1-100 Grattan street, Parkville, Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, 1-100 Grattan street, Parkville, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
5
|
Spindle assembly checkpoint gene BUB1B is essential in breast cancer cell survival. Breast Cancer Res Treat 2020; 185:331-341. [PMID: 33130993 DOI: 10.1007/s10549-020-05962-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The study aimed to investigate the role of spindle assembly checkpoint (SAC) in cancer cells with compromised genomic integrity. Chromosomal instability (CIN) gives cancer cells an adaptive advantage. However, maintaining the balance of this instability is crucial for the survival of cancer cells as it could lead them to the mitotic catastrophe. Therefore, cancer cells adapt to the detrimental effects of CIN. We hypothesized that changes in SAC might be one such adaptation mechanism. The focus of the study was BUB1B, an integral part of the checkpoint. METHODS Clinical datasets were analyzed to compare expression levels of SAC genes in normal tissue vs. breast carcinoma. The effects of the reduction of BUB1B expression was examined utilizing RNA interference method with siRNAs. In vitro viability, clonogenicity, apoptosis, and SAC activity levels of a variety of breast cancer (BrCa) cell lines, as well as in vivo tumorigenicity of the triple-negative breast cancer (TNBC) cell line MDA-MB-468, were tested. Additionally, the chromosomal stability of these cells was tested by immunofluorescence staining and flow cytometry. RESULTS In clinical breast cancer datasets, SAC genes were elevated in BrCa with BUB1B having the highest fold change. BUB1B overexpression was associated with a decreased probability of overall survival. The knockdown of BUB1B resulted in reduced viability and clonogenicity in BrCa cell lines and a significant increase in apoptosis and cell death. However, the viability and apoptosis levels of the normal breast epithelial cell line, MCF12A, were not affected. BUB1B knockdown also impaired chromosome alignment and resulted in acute chromosomal abnormalities. We also showed that BUB1B knockdown on the MDA-MB-468 cell line decreases tumor growth in mice. CONCLUSIONS A functional spindle assembly checkpoint is essential for the survival of BrCa cells. BUB1B is a critical factor in SAC, and therefore breast cancer cell survival. Impairment of BUB1B has damaging effects on cancer cell viability and tumorigenicity, especially on the more aggressive variants of BrCa.
Collapse
|
6
|
Gwon D, Hong J, Jang CY. c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis. Mol Cells 2019; 42:840-849. [PMID: 31722512 PMCID: PMC6939656 DOI: 10.14348/molcells.2019.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022] Open
Abstract
The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.
Collapse
Affiliation(s)
- Dasom Gwon
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
7
|
Kennedy K, Thomas R, Durrant J, Jiang T, Motsinger-Reif A, Breen M. Genome-wide DNA copy number analysis and targeted transcriptional analysis of canine histiocytic malignancies identifies diagnostic signatures and highlights disruption of spindle assembly complex. Chromosome Res 2019; 27:179-202. [PMID: 31011867 DOI: 10.1007/s10577-019-09606-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
Canine histiocytic malignancies (HM) are rare across the general dog population, but overrepresented in certain breeds, such as Bernese mountain dog and flat-coated retriever. Accurate diagnosis relies on immunohistochemical staining to rule out histologically similar cancers with different prognoses and treatment strategies (e.g., lymphoma and hemangiosarcoma). HM are generally treatment refractory with overall survival of less than 6 months. A lack of understanding regarding the mechanisms of disease development and progression hinders development of novel therapeutics. While the study of human tumors can benefit veterinary medicine, the rarity of the suggested orthologous disease (dendritic cell sarcoma) precludes this. This study aims to improve the understanding of underlying disease mechanisms using genome-wide DNA copy number and gene expression analysis of spontaneous HM across several dog breeds. Extensive DNA copy number disruption was evident, with losses of segments of chromosomes 16 and 31 detected in 93% and 72% of tumors, respectively. Droplet digital PCR (ddPCR) evaluation of these regions in numerous cancer specimens effectively discriminated HM from other common round cell tumors, including lymphoma and hemangiosarcoma, resulting in a novel, rapid diagnostic aid for veterinary medicine. Transcriptional analysis demonstrated disruption of the spindle assembly complex, which is linked to genomic instability and reduced therapeutic impact in humans. A key signature detected was up-regulation of Matrix Metalloproteinase 9 (MMP9), supported by an immunohistochemistry-based assessment of MMP9 protein levels. Since MMP9 has been linked with rapid metastasis and tumor aggression in humans, the data in this study offer a possible mechanism of aggression in HM.
Collapse
Affiliation(s)
- Katherine Kennedy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Sentinel Biomedical Incorporated, Centennial Biomedical Campus, Raleigh, NC, 27607, USA
| | - Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Jessica Durrant
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Tao Jiang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA. .,Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA. .,Duke Cancer Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Mužinić V, Ramić S, Želježić D. Chromosome Missegregation and Aneuploidy Induction in Human Peripheral Blood Lymphocytes In vitro by Low Concentrations of Chlorpyrifos, Imidacloprid and α-Cypermethrin. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:72-84. [PMID: 30264469 DOI: 10.1002/em.22235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos, imidacloprid, and α-cypermethrin are some of the most widely used insecticides in contemporary agriculture. However, their low-dose, nontarget genotoxic effects have not been extensively assayed. As one of the most relevant cancer biomarkers, we aimed to assess the aneuploidy due to chromosome missegregation during mitosis. To aim it we treated human lymphocytes in vitro with three concentrations of insecticides equivalents relevant for real scenario exposure assessed by regulatory agencies. We focused on chlorpyrifos as conventional and imidacloprid and α-cypermethrin as sustainable use insecticides. Cytokinesis-blocked micronucleus assay was performed coupled with fluorescence in situ hybridization (FISH) with directly labeled pancentromeric probes for chromosomes 9, 18, X and Y. None of the insecticides induced significant secondary DNA damage in terms of micronuclei (MN), nuclear buds (NB), or nucleoplasmic bridges (NPB). However, significant disbalances in chromosomes 9, 18, X and Y, and in insecticide-treated cells has been observed. According to recent studies, these disbalances in chromosome numbers may be atributted to defect sister chromatid cohesion which contribute to the increase of chromosome missegregation but not to micronuclei incidence. We conclude that tested insecticidal active substances exert chromosome missegregation effects at low concentrations, possibly by mechanism of sister chromatid cohesion. These findings may contribute to future risk assesments and understanding of insecticide mode of action on human genome. Environ. Mol. Mutagen. 60:72-84, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vedran Mužinić
- Unit of Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Snježana Ramić
- Department of Oncological Pathology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Davor Želježić
- Unit of Mutagenesis, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
9
|
Sun C, Huang S, Ju W, Hou Y, Wang Z, Liu Y, Wu L, He X. Elevated DSN1 expression is associated with poor survival in patients with hepatocellular carcinoma. Hum Pathol 2018; 81:113-120. [PMID: 30136646 DOI: 10.1016/j.humpath.2018.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022]
Abstract
Dosage suppressor of Nnf1 (DSN1) is a component of the kinetochore protein complex that is required for proper chromosome segregation. Some studies have explored that DSN1 is related to colorectal cancer progression. However, the role of DSN1 in hepatocellular carcinoma (HCC) remains unknown. This study aimed to explore DSN1 expression in HCC tissues. We obtained data from The Cancer Genome Atlas and Gene Expression Omnibus to analyze DSN1 expression in HCC. DSN1 mRNA expression was assessed in 30 pairs of HCC samples via reverse-transcription quantitative polymerase chain reaction. Immunohistochemical analysis of 95 HCC tissue specimens was performed to assess DSN1 expression and examine the clinicopathological characteristics of DSN1 in HCC. Results showed that DSN1 was upregulated in HCC tissues and was strongly associated with sex (P = .031), α-fetoprotein (P < .001), tumor size (P = .032), tumor nodule number (P = .028), cancer embolus (P = .011), and differentiation grade (P = .001). Moreover, Kaplan-Meier and Cox proportional-hazards analyses indicated that high DSN1 expression was related to poor HCC patient survival and that DSN1 can serve as an independent prognostic factor for overall survival and disease-free survival. In conclusion, our findings indicate that DSN1 could serve as a novel prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziming Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Youjie Liu
- Basic Medical College, Jinan University, Guangzhou, 510632, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Park I, Kwon MS, Paik S, Kim H, Lee HO, Choi E, Lee H. HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing. FEBS J 2017; 284:4035-4050. [DOI: 10.1111/febs.14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Inai Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Sangjin Paik
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyeonjong Kim
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hae-Ock Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Eunhee Choi
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| |
Collapse
|
11
|
Sheng J, Yin M, Sun Z, Kang X, Liu D, Jiang K, Xu J, Zhao F, Guo Q, Zheng W. SPC24 promotes osteosarcoma progression by increasing EGFR/MAPK signaling. Oncotarget 2017; 8:105276-105283. [PMID: 29285250 PMCID: PMC5739637 DOI: 10.18632/oncotarget.22167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, we investigated the role of the spindle checkpoint protein SPC24 in osteosarcoma progression. SPC24 knockdown in 143B and U2OS osteosarcoma cells decreased cell growth, survival and invasiveness. The SPC24 knockdown cells also exhibited low EGFR, Ras and phospho-ERK levels and high E-cadherin levels, suggesting inhibition of EGFR/Ras/ERK signaling and epithelial-to-mesenchymal transitioning. Xenografted SPC24 knockdown osteosarcoma cells showed reduced tumor growth in nude mice with decreased EGFR and phospho-ERK levels and increased E-cadherin levels. By contrast, human osteosarcoma tissue samples showed high SPC24 and phospho-ERK levels and low E-cadherin levels. These results suggest SPC24 promotes osteosarcoma progression by increasing EGFR/Ras/ERK signaling.
Collapse
Affiliation(s)
- Jun Sheng
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Mengchen Yin
- Department of Orthopedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengwang Sun
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Xia Kang
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Da Liu
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Kai Jiang
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Jia Xu
- Department of Personnel Office, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Feixing Zhao
- Department of Pathology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Qunfeng Guo
- Department of Orthopedics, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Wei Zheng
- Department of Orthopedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhou J, Yu Y, Pei Y, Cao C, Ding C, Wang D, Sun L, Niu G. A potential prognostic biomarker SPC24 promotes tumorigenesis and metastasis in lung cancer. Oncotarget 2017; 8:65469-65480. [PMID: 29029446 PMCID: PMC5630346 DOI: 10.18632/oncotarget.18971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/16/2017] [Indexed: 01/14/2023] Open
Abstract
RESULTS SPC24 is over-expressed in clinical lung adenocarcinoma samples, and high level of SPC24 is associated with advanced stages of lung tumors. Knocking down SPC24 repressed cell growth and promoted apoptosis. SPC24 deficiency reduced cancer cell migration as well. E-cadherin, one of the epithelial-mesenchymal transition markers, was up-regulated in the knockdown cells, along with down-regulation of N-cadherin and Vimentin. Oncomine expression analyses further confirmed that high level of SPC24 is associated with tumors from smokers, recurrent patients, or patients with shorter survivals. PURPOSE AND METHODS To reveal the role of SPC24, an important component of kinetochore, in the tumorigenesis of lung cancer, we performed Oncomine and immunohistochemistry (IHC) analyses for SPC24 in human lung adenocarcinoma tumors. We knocked down SPC24 in two non-small cell lung cancer (NSCLC) cell lines, PC9 and A549, by siRNA and evaluated cell proliferation, apoptosis, and migration in the SPC24-deficient cells. Using a mouse xenograft model, we compared in vivo tumor growth of the knockdown and control cells. We further performed multiple Oncomine expression analyses for SPC24 in various lung cancer datasets with important clinical characteristics and risk factors, including survival, recurrence, and smoking status. CONCLUSIONS SPC24 is a novel oncogene of lung cancer, and can serve as a promising prognostic biomarker to differentiate lung tumors that have various clinicopathological characteristics. The findings of the current study will benefit the diagnosis, management, and targeted therapy of lung cancer.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Yang Yu
- Department of Medical Oncology, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Yunfeng Pei
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Chunping Cao
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Chen Ding
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Duping Wang
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| | - Guoping Niu
- Department of Clinical Laboratory, Affiliated to Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, People's Republic of China
| |
Collapse
|
13
|
Garcia J, Lizcano F. KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:169-175. [PMID: 27840577 PMCID: PMC5094578 DOI: 10.4137/bcbcr.s40182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
14
|
McIntyre RE, Nicod J, Robles-Espinoza CD, Maciejowski J, Cai N, Hill J, Verstraten R, Iyer V, Rust AG, Balmus G, Mott R, Flint J, Adams DJ. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice. G3 (BETHESDA, MD.) 2016; 6:2343-54. [PMID: 27233670 PMCID: PMC4978889 DOI: 10.1534/g3.116.030767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 12/29/2022]
Abstract
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males.
Collapse
Affiliation(s)
- Rebecca E McIntyre
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065
| | - Na Cai
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Jennifer Hill
- Microbial Pathogenesis, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ruth Verstraten
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Gabriel Balmus
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN, UK
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK UCL Genetics Institute, University College London, WC1E 6BT, UK
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
15
|
Kim JH, Lee HS, Lee NCO, Goncharov NV, Kumeiko V, Masumoto H, Earnshaw WC, Kouprina N, Larionov V. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells. Oncotarget 2016; 7:14841-56. [PMID: 26943579 PMCID: PMC4924756 DOI: 10.18632/oncotarget.7854] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- School of Biomedicine, Far Eastern Federal University, A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
16
|
Abstract
Chromosome instability (CIN) is gaining increasing interest as a central process in cancer. CIN, either past or present, is indicated whenever tumour cells harbour an abnormal quantity of DNA, termed 'aneuploidy'. At present, the most widely used approach to detecting aneuploidy is DNA cytometry - a well-known research assay that involves staining of DNA in the nuclei of cells from a tissue sample, followed by analysis using quantitative flow cytometry or microscopic imaging. Aneuploidy in cancer tissue has been implicated as a predictor of a poor prognosis. In this Review, we have explored this hypothesis by surveying the current landscape of peer-reviewed research in which DNA cytometry has been applied in studies with disease-appropriate clinical follow up. This area of research is broad, however, and we restricted our survey to results published since 2000 relating to seven common epithelial cancers (those of the breast; endometrium, ovary, and uterine cervix; oesophagus; colon and rectum; lung; prostate; and bladder). We placed particular emphasis on results from multivariate analyses to pinpoint situations in which the prognostic value of aneuploidy as a biomarker is strong compared with that of existing indicators, such as clinical stage, histological grade, and specific molecular markers. We summarize the implications of our findings for the prognostic use of ploidy analysis in the clinic and for the theoretical understanding of the role of CIN in carcinogenesis.
Collapse
|