1
|
Rácz GA, Nagy N, Várady G, Tóvári J, Apáti Á, Vértessy BG. Discovery of two new isoforms of the human DUT gene. Sci Rep 2023; 13:7760. [PMID: 37173337 PMCID: PMC10181998 DOI: 10.1038/s41598-023-32970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
In human cells two dUTPase isoforms have been described: one nuclear (DUT-N) and one mitochondrial (DUT-M), with cognate localization signals. In contrast, here we identified two additional isoforms; DUT-3 without any localization signal and DUT-4 with the same nuclear localization signal as DUT-N. Based on an RT-qPCR method for simultaneous isoform-specific quantification we analysed the relative expression patterns in 20 human cell lines of highly different origins. We found that the DUT-N isoform is expressed by far at the highest level, followed by the DUT-M and the DUT-3 isoform. A strong correlation between expression levels of DUT-M and DUT-3 suggests that these two isoforms may share the same promoter. We analysed the effect of serum starvation on the expression of dUTPase isoforms compared to non-treated cells and found that the mRNA levels of DUT-N decreased in A-549 and MDA-MB-231 cells, but not in HeLa cells. Surprisingly, upon serum starvation DUT-M and DUT-3 showed a significant increase in the expression, while the expression level of the DUT-4 isoform did not show any changes. Taken together our results indicate that the cellular dUTPase supply may also be provided in the cytoplasm and starvation stress induced expression changes are cell line dependent.
Collapse
Affiliation(s)
- Gergely Attila Rácz
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem Rkp. 3., Budapest, 1111, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary.
| | - Nikolett Nagy
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest Pázmány Péter Sétány 1/C, Budapest, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth Gy. U. 7-9, Budapest, 1122, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem Rkp. 3., Budapest, 1111, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
2
|
Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines. Sci Rep 2021; 11:19459. [PMID: 34593877 PMCID: PMC8484624 DOI: 10.1038/s41598-021-98869-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 11/08/2022] Open
Abstract
Reverse transcription—quantitative real-time PCR (RT-qPCR) is a ubiquitously used method in biological research, however, finding appropriate reference genes for normalization is challenging. We aimed to identify genes characterized with low expression variability among human cancer and normal cell lines. For this purpose, we investigated the expression of 12 candidate reference genes in 13 widely used human cancer cell lines (HeLa, MCF-7, A-549, K-562, HL-60(TB), HT-29, MDA-MB-231, HCT 116, U-937, SH-SY5Y, U-251MG, MOLT-4 and RPMI-8226) and, in addition, 7 normal cell lines (HEK293, MRC-5, HUVEC/TERT2, HMEC, HFF-1, HUES 9, XCL-1). In our set of genes, we included SNW1 and CNOT4 as novel candidate reference genes based on the RNA HPA cell line gene data from The Human Protein Atlas. HNRNPL and PCBP1 were also included along with the „classical” reference genes ACTB, GAPDH, IPO8, PPIA, PUM1, RPL30, TBP and UBC. Results were evaluated using GeNorm, NormFiner, BestKeeper and the Comparative ΔCt methods. In conclusion, we propose IPO8, PUM1, HNRNPL, SNW1 and CNOT4 as stable reference genes for comparing gene expression between different cell lines. CNOT4 was also the most stable gene upon serum starvation.
Collapse
|
3
|
Jeong Y, Choi WY, Park A, Lee YJ, Lee Y, Park GH, Lee SJ, Lee WK, Ryu YK, Kang DH. Marine cyanobacterium Spirulina maxima as an alternate to the animal cell culture medium supplement. Sci Rep 2021; 11:4906. [PMID: 33649424 PMCID: PMC7921123 DOI: 10.1038/s41598-021-84558-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Serum is a stable medium supplement for in vitro cell culture. Live cells are used in stem cell research, drug toxicity and safety testing, disease diagnosis and prevention, and development of antibiotics, drugs, and vaccines. However, use of serum in culture involves concerns such as an ethical debate regarding the collection process, lack of standardized ingredients, and high cost. Herein, therefore, we evaluated the possibility of using edible cyanobacterium (Spirulina maxima), which is a nutrient-rich, sustainable, and ethically acceptable source, as a novel substitute for fetal bovine serum (FBS). H460 cells were cultured to the 10th generation by adding a mixture of spirulina animal cell culture solution (SACCS) and FBS to the culture medium. Cell morphology and viability, cell cycle, apoptosis, proteomes, and transcriptomes were assessed. We observed that SACCS had better growth-promoting capabilities than FBS. Cell proliferation was promoted even when FBS was replaced by 50-70% SACCS; there was no significant difference in cell shape or viability. There were only slight differences in the cell cycle, apoptosis, proteomes, and transcriptomes of the cells grown in presence of SACCS. Therefore, SACCS has the potential to be an effective, low-cost, and eco-friendly alternative to FBS in in vitro culture.
Collapse
Affiliation(s)
- Younsik Jeong
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Woon-Yong Choi
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Areumi Park
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Yeon-Ji Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Youngdeuk Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Gun-Hoo Park
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Seoul, Republic of Korea
| | - Su-Jin Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
| | - Won-Kyu Lee
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
- Department of Ocean Science, University of Science and Technology (UST), Jeju, Republic of Korea
| | - Yong-Kyun Ryu
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea
- Department of Ocean Science, University of Science and Technology (UST), Jeju, Republic of Korea
| | - Do-Hyung Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju, Republic of Korea.
- Department of Ocean Science, University of Science and Technology (UST), Jeju, Republic of Korea.
| |
Collapse
|
4
|
Mongre RK, Mishra CB, Jung S, Lee BS, Quynh NTN, Anh NH, Myagmarjav D, Jo T, Lee MS. Exploring the Role of TRIP-Brs in Human Breast Cancer: An Investigation of Expression, Clinicopathological Significance, and Prognosis. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:105-126. [PMID: 33102693 PMCID: PMC7554327 DOI: 10.1016/j.omto.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
TRIP-Brs, a group of transcription factors (TFs) that modulate several mechanisms in higher organisms. However, the novel paradigm to target TRIP-Brs in specific cancer remains to be deciphered. In particular, comprehensive analysis of TRIP-Brs in clinicopathological and patients’ prognosis, especially in breast cancer (BRCA), is being greatly ignored. Therefore, we explored the key roles of TRIP-Br expression, modulatory effects, mutations, immune infiltration, and prognosis in BRCA using multidimensional approaches. We found elevated levels of TRIP-Brs in numerous cancer tissues than normal. Higher expression of TRIP-Br-2/4/5 was shown to be positively associated with lower survival, tumor grade, and malignancy of patients with BRCA. Additionally, higher TRIP-Br-3/4 were also significantly linked with worse/short survival of BRCA patients. TRIP-Br-1/4/5 were significantly overexpressed and enhanced tumorigenesis in large-scale BRCA datasets. The mRNA levels of TRIP-Brs have been also correlated with tumor immune infiltrate in BRCA patients. In addition, TRIP-Brs synergistically play a pivotal role in central carbon metabolism, cancer-associated pathways, cell cycle, and thyroid hormone signaling, which evoke that TRIP-Brs may be a potential target for the therapy of BRCA. Thus, this investigation may lay a foundation for further research on TRIP-Br-mediated management of BRCA.
Collapse
Affiliation(s)
- Raj Kumar Mongre
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Beom Suk Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Nguyen Thi Ngoc Quynh
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Nguyen Hai Anh
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Davaajragal Myagmarjav
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Taeyeon Jo
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Hyochangwon gil-52, Yongsan-Gu, Seoul 140-742, Republic of Korea
| |
Collapse
|