1
|
Kanté Tagueu S, Mbida Mbida JA, Mamia Grace F, Kamga Ndéfo RM, Atangana Bita G, Atiokeng Tatang RJ, Acho A, Njiokou F, Simo G. Diversity of trypanosomes in tsetse fly caught in two "silent" sleeping sickness foci of Bafia and the Manoka Island in Cameroon. Parasitol Int 2025; 104:102970. [PMID: 39303851 DOI: 10.1016/j.parint.2024.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Surveillance of "silent" human African Trypanosomiasis (HAT) foci is important for the achievement of the World Health Organization (WHO) goal of interrupting the transmission of this disease by 2030. It is in this context that this study was carried out to determine the trypanosome species circulating in the "silent" HAT foci of Bafia and the Manoka island in Cameroon. METHODS In the Bafia and Manoka HAT foci, georeferenced pyramidal traps were used to trap tsetse flies. After DNA extraction from each whole fly, molecular tools were used to detect different trypanosome species as well as the origin of tsetse fly blood meals. Geographical information system was used to map the trypanosome infections and entomological data and to localize areas at high risk for trypanosome transmission. RESULTS For this study, 1683 tsetse flies were caught and the relative apparent densities was 2.96: 0.03 in the Bafia HAT focus and 5.23 in the Manoka island. For the molecular identification of trypanosomes, 708 non-teneral tsetse flies (8 from Bafia and 700 from Manoka) were randomly selected. The overall trypanosome infection rate was 7.34 % with no infection in the Bafia HAT focus. Among the analysed flies, 4.57 % had trypanosomes of the subgenus Trypanozoon while 4.1 % and 1.13 % had respectively T. congolense and T. vivax. The most common mixed infections were the combination of trypanosomes of the subgenus Trypanozoon and T. congolense. Of the 708 tsetse flies analysed, 134 (18.93 %) tsetse flies were found with residual blood meals, 94 % and 6 % were respectively from humans and dogs. The trapping sites of Plateau, Sandje and Hospital appeared as the areas where contact with tsetse flies is most common. CONCLUSION This study revealed a discrepancy in the abundance tsetse flies as well as the trypanosome infection rates in tsetse of the two "silent" HAT foci of Cameroon. The detection of different trypanosome species in tsetse from the Manoka Island highlights their transmission. The high percentage of human blood meals in tsetse flies indicates an important contact between tsetse flies and human; emphasizing the risk of trypanosome transmission to human in this island.
Collapse
Affiliation(s)
- Sartrien Kanté Tagueu
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon; Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67 Dschang, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, PO Box: 13591, Cameroon.
| | - Jean Arthur Mbida Mbida
- Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala PO Box 24 157, Douala, Cameroon.
| | - Florentine Mamia Grace
- Laboratory of Animal Biology, Department of Animal Biology, Faculty of Science, University of Douala PO Box 24 157, Douala, Cameroon.
| | - Rolin Mitterran Kamga Ndéfo
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon.
| | - Gael Atangana Bita
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Rostand Joël Atiokeng Tatang
- Research Unit of Applied Biology and Ecology, Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| | | | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Gustave Simo
- Faculty of Science and Technology, Evangelical University Institute of Cameroon, PO Box. 127, Bandjoun, Cameroon.
| |
Collapse
|
2
|
Gebeyehu S, Robi DT. Epidemiological investigation of trypanosomosis in livestock and distribution of vector in Dabo Hana district, Southwest Oromia, Ethiopia. Parasite Epidemiol Control 2024; 27:e00396. [PMID: 39720310 PMCID: PMC11667175 DOI: 10.1016/j.parepi.2024.e00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024] Open
Abstract
The trypanosomosis remains unresolved due to its impact on various hosts, leading to production losses in Ethiopia. In the Southwest of Oromia, multiple livestock species share grazing land in tsetse-infested areas. Thus, a cross-sectional study was conducted from December 2020 to December 2021 to determine the prevalence and associated risk factors of trypanosomosis in bovines, small ruminants, and equines, as well as the distribution of the vector in the Dabo Hana district of Southwest Oromia, Ethiopia. A vector survey was carried out using 60 monoconical traps placed at intervals ranging from about 100 to 200 m. Out of the 1441 flies captured, 86.2 % were Glossina, 7.84 % were Stomoxys, and 5.96 % were Tabanus. The overall apparent density of flies was 12 flies per trap per day. Among the 1242 caught Glossina species, 85 % were identified as G. tachinoides and 15 % as G. m. submorsitans. The average age of male tsetse flies was 28 days, and the overall infection rate of trypanosomes in tsetse flies was 4.8 %. A total of 701 blood samples (190 from bovines, 384 from small ruminants, and 127 from equines) were analyzed using buffy coat and Giemsa techniques. The prevalence of trypanosomosis was found to be 10 % in bovines, 4.2 % in small ruminants, and 3.1 % in equines. A significant difference (P < 0.05) in trypanosome infection was observed among the three host species, as well as with respect to the age and body condition of the animals. The predominant cause of infection was T. congolense, accounting for 74.4 % of cases. The mean packed cell volume (PCV) values of infected bovines, small ruminants, and equines were significantly lower (P < 0.05) compared to those of non-infected animals. Trypanosomosis is a major livestock disease in the study area. The findings provide valuable insights into the prevalence and infection rates of trypanosomosis, identify the affected species, and highlight significant risk factors, such as age, body condition, and vector distribution. Implementing sustainable and integrated practices for trypanosomosis control is crucial, and conducting molecular techniques in different seasons is also recommended.
Collapse
Affiliation(s)
- Surra Gebeyehu
- Wollega University, School of Veterinary Medicine, Nekemte, Ethiopia
| | - Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O. Box 34, Tepi, Ethiopia
| |
Collapse
|
3
|
Ofon EA, Metiadjoue MCC, Kante ST, Magang EMK, Mewamba EM, Kamga RMN, Fogue SP, Simo G. Evaluation of ITS1 rDNA primers for the detection and identification of African trypanosomes in mammalian hosts and tsetse flies. Acta Trop 2024; 258:107331. [PMID: 39059714 DOI: 10.1016/j.actatropica.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Although several primers targeted to the internal transcribed-spacer 1 (ITS1) of the ribosomal DNA (rDNA) have been designed to improve the detection of African trypanosomes, no study tried to compare their agreement level and ability to amplify different trypanosome species in tsetse flies and mammals in various epidemiological settings. This study was designed to fill this gap, by targeting tsetse-infested areas of Cameroon. For this, archived DNA samples reporting at-least one trypanosome species with species-specific PCR primers were reviewed. Ten sets of primers targeting different ITS1 rDNA sequences of trypanosomes were selected for assessment using single-round and nested-PCR method. Amplification rates (sensitivity) and agreement level of different ITS1 assays were compared using Cohen's-Kappa and McNemar's x2 statistic. Little agreement level (k = 0.05-0.52) were observed between different ITS1-primers PCRs detection of African trypanosome species despite significant (X2=54.3, p = 0.0001) high amplification rate 91.6 % (339/370). This sensitivity varied from quite low for T. simiae (11.9 %) and T. vivax (27.3 %) to fairly good for T. congolence (51.9 %), Trypanozoon (32.4 %) and T. theileri (40.3 %). Primers set targeting ITS1-A sequence of trypanosome species recorded the highest sensitivity (50.5 %) with fairly good agreement compared to 39.2 % for ITS1-C (k = 0.52), 32.4 % for ITS1-R (k = 0.47), 29.7 % for ITS1-N (k = 0.48) and 23.0 % for ITS1-KIN (k = 0.43) respectively. This study revealed a diversity in the sensitivity of different trypanosome species with different sets of ITS-primers enhancing the need to use the same sets of primers in different bio-ecological settings. The use of nested-PCR instead of single-round PCR enabled improvement of trypanosome infections detection in both tsetse and mammals. Among the sets of ITS1-primers tested, those designed by to amplify ITS1-A can be considered as the most appropriate for the detection of trypanosome infections in mammals and tsetse flies.
Collapse
Affiliation(s)
- Elvis Amih Ofon
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon; Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | | | - Sartrien Tagueu Kante
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Faculty of Science and Technology, Evangelical University Institute of Cameroon, Mbouo-Bandjoun, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Estelle Mezajou Mewamba
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Rolin Mitterran Ndefo Kamga
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Soubgwi Pythagore Fogue
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
4
|
Mewamba EM, Magang EMK, Tiofack AAZ, Woguia GF, Bouaka CUT, Kamga RMN, Farikou O, Fogue PS, Tume C, Ravel S, Simo G. Trypanosome infections in animals from tsetse infected areas of Cameroon and their sensitivity and resistance molecular profiles for diminazene aceturate and isometamidium chloride. Vet Parasitol Reg Stud Reports 2023; 41:100868. [PMID: 37208078 DOI: 10.1016/j.vprsr.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Monitoring and assessment of control strategies for African trypanosomoses' elimination require not only updating data on trypanosome infections, but also to have an overview on the molecular profiles of trypanocides resistance in different epidemiological settings. This study was designed to determine, in animals from six tsetse-infested areas of Cameroon, the prevalence of trypanosome infections as well as the diminazene aceturate (DA) and isometamidium chloride (ISM) sensitivity/resistance molecular profiles of these trypanosomes. From 2016 to 2019, blood was collected in pigs, dogs, sheep, goats and cattle from six tsetse infested areas of Cameroon. DNA was extracted from blood and trypanosome species were identified by PCR. The sensitivity/resistance molecular profiles of trypanosomes to DA and ISM were investigated using PCR-RFLP. From 1343 blood samples collected, Trypanosoma vivax, Trypanosoma congolense forest and savannah, Trypanosoma theileri and trypanosomes of the sub-genus Trypanozoon were identified. The overall prevalence of trypanosome infections was 18.7%. These prevalence vary between trypanosome species, animal taxa, within and between sampling sites. Trypanosoma theileri was the predominant species with an infection rate of 12.1%. Trypanosomes showing resistant molecular profiles for ISM and DA were identified in animals from Tibati (2.7% for ISM and 65.6% for DA) and Kontcha (0.3% for ISM and 6.2% for DA). No trypanosome carrying resistant molecular profile for any of the two trypanocides was detected in animals from Fontem, Campo, Bipindi and Touboro. Mixed molecular profiles of sensitive/resistant trypanosomes were detected in animals from Tibati and Kontcha. Results of this study highlighted the presence of various trypanosome species as well as parasites carrying sensitive/resistant molecular profiles for DA and ISM in animals of tsetse infested areas of Cameroon. They indicate that the control strategies must be adapted according to epidemiological settings. The diversity of trypanosomes indicates that AAT remains a serious threat for animal breeding and animal health in these tsetse infested areas.
Collapse
Affiliation(s)
- Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilles-Fils Woguia
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Calmes Ursain Tsakeng Bouaka
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oumarou Farikou
- Special Mission for Eradication of Tsetse flies, Regional tsetse Division of Adamawa, MINEPIA, Ngaoundere, Cameroon; Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Pythagore Sobgwi Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Sophie Ravel
- IRD INTERTRYP, CIRAD, University of Montpellier, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
5
|
Vourchakbé J, Tiofack AAZ, Kante ST, Barka PA, Simo G. Prevalence of pathogenic trypanosome species in naturally infected cattle of three sleeping sickness foci of the south of Chad. PLoS One 2022; 17:e0279730. [PMID: 36584086 PMCID: PMC9803169 DOI: 10.1371/journal.pone.0279730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Although a diversity of trypanosome species have been detected in various animal taxa from human African trypanosomosis (HAT) foci, cattle trypanosomosis has not been addressed in HAT foci of west and central African countries including Chad. This study aimed to determine the prevalence of pathogenic trypanosome species in cattle from three HAT foci of the south of Chad. Blood samples were collected from 1466 randomly selected cattle from HAT foci of Mandoul, Maro, and Moïssala in the south of Chad. For each animal, the sex, age and body condition were recorded. Rapid diagnostic test (RDT) was used to search Trypanosoma brucei gambiense antibodies while the capillary tube centrifugation (CTC) test and PCR-based methods enabled to detect and identify trypanosome species. From the 1466 cattle, 45 (3.1%) were positive to RDT. The prevalence of trypanosome infections revealed by CTC and PCR-based method were respectively 2.7% and 11.1%. Trypanosomes of the subgenus Trypanozoon were dominant (6.5%) followed by T. congolense savannah (2.9%), T. congolense forest (2.5%) and T. vivax (0.8%). No animal was found with DNA of human infective trypanosome (T. b. gambiense). The overall prevalence of trypanosome infections was significantly higher in animal from the Maro HAT focus (13.8%) than those from Mandoul (11.1%) and Moïssala HAT foci (8.0%). This prevalence was also significantly higher in animal having poor body condition (77.5%) than those with medium (11.2%) and good (0.5%) body condition. The overall prevalence of single and mixed infections were respectively 9.4% and 1.6%. This study revealed natural infections of several pathogenic trypanosome species in cattle from different HAT foci of Chad. It showed similar transmission patterns of these trypanosome species and highlighted the need of developing control strategies for animal African trypanosomosis (AAT) with the overarching goal of improving animal health and the economy of smallholder farmers.
Collapse
Affiliation(s)
- Joël Vourchakbé
- Department of Biological Science, Faculty of Science and Technology, University of Doba, Doba, Chad
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Sartrien Tagueu Kante
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Padja Abdoul Barka
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
6
|
Bemba I, Lenga A, Awono-Ambene HP, Antonio-Nkondjio C. Tsetse Flies Infected with Trypanosomes in Three Active Human African Trypanosomiasis Foci of the Republic of Congo. Pathogens 2022; 11:1275. [PMID: 36365026 PMCID: PMC9699545 DOI: 10.3390/pathogens11111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2024] Open
Abstract
INTRODUCTION Human African trypanosomiasis (HAT) is a neglected tropical disease still endemic in the Republic of Congo. Despite the continuous detection of HAT cases in the country, there is still not enough data on trypanosome infections in tsetse flies, trypanosome species and tsetse flies' species distribution in endemic foci. The present study was intended to fill this gap and improve understanding of trypanosome circulation in three active foci in the centre and south of Congo. METHODS Pyramid traps were set in various places in villages to collect tsetse flies both during the rainy and dry seasons. Once collected, tsetse flies were identified using morphological keys. DNA extracted from flies was processed by PCR for species identification and for detection of trypanosome presence. A second PCR was run for different trypanosome species identification. RESULTS A total of 1291 tsetse flies were collected. The average apparent density of flies per day was 0.043 in Mpouya, 0.73 in Ngabé and 2.79 in Loudima. Glossina fuscipes quazensis was the predominant tsetse fly collected in Ngabé and Mpouya, while Glossina palpalis palpalis was the only tsetse fly found in Loudima. A total of 224 (17.7%) flies were detected infected by trypanosomes; 100 (7.91%) by Trypanosoma congolense savannah, 22 (1.74%) by Trypanosoma congolense forest, 15 (1.19%) by Trypanosoma vivax, 83 (6.56%) by Trypanosoma brucei (s.l.) and 2 (0.16%) undetermined species. No T Trypanosoma brucei gambiense was found. A total of 57 co-infections between T. brucei (s.l.) and T. congolense savannah or T. brucei (s.l.) and T. congolense forest were found only in G. p. palpalis. Loudima recorded the highest number of infected tsetse flies. CONCLUSION The study provided updated information on the distribution of tsetse fly populations as well as on Trypanosoma species circulating in tsetse flies in the different active HAT foci in Congo. These data suggested a high risk of potential transmission of animal trypanosomes in these foci, thus stressing the need for active surveillance in this endemic area.
Collapse
Affiliation(s)
- Irina Bemba
- Laboratory of Animal Biology and Ecology, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville B.P. 69, Congo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| | - Arsene Lenga
- Laboratory of Animal Biology and Ecology, Faculty of Science and Technology, Marien Ngouabi University, Brazzaville B.P. 69, Congo
| | - Herman Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé B.P. 288, Cameroon
| |
Collapse
|
7
|
Investigation on Prevalence of Canine Trypanosomiasis in the Conservation Areas of Bwindi-Mgahinga and Queen Elizabeth in Western Uganda. J Parasitol Res 2022; 2022:2606871. [PMID: 36124129 PMCID: PMC9482531 DOI: 10.1155/2022/2606871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Nowadays, despite the instauration of several control strategies, animal trypanosomiasis continues to be reported all over Uganda. Few canine African trypanosomiasis (CAT) studies have been carried out, yet dogs are known Trypanosoma reservoirs that share identical home ranges with livestock and serve as parasite link between livestock and humans. This study evaluates the prevalence of CAT in dogs in the Bwindi-Mgahinga and Queen Elizabeth conservation areas. This information will be useful to evaluate the possible role of dogs in the transmission cycle of Trypanosoma species in livestock and wild animals. Trypanosome tests using microhematocrit centrifugation/dark ground microscopy technique (MHCT) followed by conventional polymerase chain reaction (cPCR) were performed in blood samples collected from identified indigenous dogs (
). Four (3.23%) out of 124 dogs were positive for CAT. One dog was positive with Trypanosoma congolense and three with T. vivax. There was no significant statistical difference in CAT prevalence rate in relation to dog’s age, sex, and site (
). This study reports what we believe is the first time detection of T. congolense and T. vivax in the indigenous dogs found in the Bwindi-Mgahinga and Queen Elizabeth conservation areas in western Uganda. The noticed T. congolense and T. vivax could be responsible for both canine and animal trypanosomiasis and represent a serious threat to the livestock industry. Therefore, there is a need for continuous trypanosomiasis surveillance and integrated management in contiguity to wildlife reserves.
Collapse
|
8
|
Desquesnes M, Gonzatti M, Sazmand A, Thévenon S, Bossard G, Boulangé A, Gimonneau G, Truc P, Herder S, Ravel S, Sereno D, Jamonneau V, Jittapalapong S, Jacquiet P, Solano P, Berthier D. A review on the diagnosis of animal trypanosomoses. Parasit Vectors 2022; 15:64. [PMID: 35183235 PMCID: PMC8858479 DOI: 10.1186/s13071-022-05190-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
This review focuses on the most reliable and up-to-date methods for diagnosing trypanosomoses, a group of diseases of wild and domestic mammals, caused by trypanosomes, parasitic zooflagellate protozoans mainly transmitted by insects. In Africa, the Americas and Asia, these diseases, which in some cases affect humans, result in significant illness in animals and cause major economic losses in livestock. A number of pathogens are described in this review, including several Salivarian trypanosomes, such as Trypanosoma brucei sspp. (among which are the agents of sleeping sickness, the human African trypanosomiasis [HAT]), Trypanosoma congolense and Trypanosoma vivax (causing “Nagana” or animal African trypanosomosis [AAT]), Trypanosoma evansi (“Surra”) and Trypanosoma equiperdum (“Dourine”), and Trypanosoma cruzi, a Stercorarian trypanosome, etiological agent of the American trypanosomiasis (Chagas disease). Diagnostic methods for detecting zoonotic trypanosomes causing Chagas disease and HAT in animals, as well as a diagnostic method for detecting animal trypanosomes in humans (the so-called “atypical human infections by animal trypanosomes” [a-HT]), including T. evansi and Trypanosoma lewisi (a rat parasite), are also reviewed. Our goal is to present an integrated view of the various diagnostic methods and techniques, including those for: (i) parasite detection; (ii) DNA detection; and (iii) antibody detection. The discussion covers various other factors that need to be considered, such as the sensitivity and specificity of the various diagnostic methods, critical cross-reactions that may be expected among Trypanosomatidae, additional complementary information, such as clinical observations and epizootiological context, scale of study and logistic and cost constraints. The suitability of examining multiple specimens and samples using several techniques is discussed, as well as risks to technicians, in the context of specific geographical regions and settings. This overview also addresses the challenge of diagnosing mixed infections with different Trypanosoma species and/or kinetoplastid parasites. Improving and strengthening procedures for diagnosing animal trypanosomoses throughout the world will result in a better control of infections and will significantly impact on “One Health,” by advancing and preserving animal, human and environmental health.
Collapse
|
9
|
Knowledge, Attitude, and Practice of Livestock Owners and Livestock Assistants towards African Trypanosomiasis Control in The Gambia. J Parasitol Res 2022; 2022:3379804. [PMID: 35111338 PMCID: PMC8803466 DOI: 10.1155/2022/3379804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background In Africa, it has been estimated that 50 million cattle and 70 million sheep and goats are at risk of animal African trypanosomiasis, and three million cattle die annually. Methods This study was conducted in all the regions of The Gambia except Kombo Saint Mary Island (Banjul). Structured questionnaires were administered to 440 randomly selected livestock owners and 23 livestock assistants, and 7 focus group discussions were held for both livestock owners and livestock assistants. The data were analyzed mainly using descriptive statistics and content analysis methods. Results A total of 94.5% and 75% of livestock owners reported having seen tsetse and horse flies, respectively, while 100% of livestock assistants reported having seen tsetse flies. Forty-seven percent of the livestock owners indicated a positive attitude toward control measures, while 42% of them had no idea how to control tsetse flies. On the other hand, 57% of livestock assistants believe that tsetse and horse flies are the main reasons why AAT is still in their community. There was a statistically significant difference between all the respondents' characteristics and the practices done by livestock owners to prevent AAT vectors from biting their animals. Conclusion This study shows that trypanosomiasis is still a major problem for livestock health and production in The Gambia, and it requires disease and vector control.
Collapse
|
10
|
Habeeb IF, Chechet GD, Kwaga JKP. Molecular identification and prevalence of trypanosomes in cattle distributed within the Jebba axis of the River Niger, Kwara state, Nigeria. Parasit Vectors 2021; 14:560. [PMID: 34715895 PMCID: PMC8557008 DOI: 10.1186/s13071-021-05054-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Trypanosomiasis is a fatal disease that threatens the economy of at least 37 countries in sub-Saharan Africa, particularly with regard to livestock farming. In this study, we investigated the prevalence of trypanosome infection in cattle, and molecularly identified the species of trypanosomes in infected cattle and the spatial distribution of trypanosome-infected herds along the Jebba axis of the River Niger. Methods A randomized cross-sectional study was conducted along the Jebba axis of the River Niger by screening cattle from 36 herd clusters by nested PCR using ITS-1 generic primers. Data generated were analysed using the Chi-square test at a 95% confidence interval. Results Microscopic examination revealed three infected cattle out of 398 examined, representing 0.8% prevalence. Twelve animals (3.0%) were positive by PCR. Our results showed a decline in the packed cell volume of infected animals (24.7%). The infection rates were categorized as single infection in 11/12 (91.7%) and mixed infection in 1/12 (8.3%). Animals were most frequently infected by Trypanosoma congolense (50.0%), with T. congolense Savannah being the most prevalent subspecies (71.4%). Aside from the infection rate by age (10.0%) and relative distance of animals from the River Niger (56.2%), statistical differences in every other parameter tested were based on mere probabilistic chance. Spatial data showed that the disease was prevalent among herds located less than 3 km from the River Niger. Conclusions Six species of trypanosomes were identified in cattle herds along the Jebba axis of the River Niger, with T. congolense being the most prevalent. Age and relative distance of herds from the River Niger may be risk factors for trypanosome infection in cattle herds in this area. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05054-0.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria. .,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria. .,National Space Research and Development Agency, Abuja Nigeria (NASRDA), Abuja, Nigeria.
| | - Gloria Dada Chechet
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Jacob K P Kwaga
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.,Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
11
|
Leschnik M, Silbermayr K, Guija A, Nell B. Diagnosis and successful treatment of an Austrian dog infected with Trypanosoma congolense forest type. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2021; 49:142-147. [PMID: 33902123 DOI: 10.1055/a-1377-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Canine African Trypanosomosis (CAT) is a rarely described disease with frequently lethal outcome. A 5-year-old female mongrel dog weighing 22 kg was presented in Austria due to unilateral uveitis, pancytopenia, and anorexia 4 months after return from a trip through Western Africa. Trypanosoma spp. flagellates were detected in a blood smear and identified as Trypanosoma congolense forest type by PCR. Initial treatment with imidocarb and miltefosine led to clinical improvement but only isometamidium chloride hydrochloride applied intramuscularly led to complete eradication of the pathogen from the dog's blood 4 months later.
Collapse
Affiliation(s)
- Michael Leschnik
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Austria
| | - Katja Silbermayr
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Austria
| | - Abigail Guija
- Department of Pathobiology, Central Laboratory, University of Veterinary Medicine Vienna, Austria
| | - Barbara Nell
- Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
12
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
13
|
An African Canine Trypanosomosis Case Import: Is There a Possibility of Creating a Secondary Focus of Trypanosoma congolense Infection in France? Pathogens 2020; 9:pathogens9090709. [PMID: 32867247 PMCID: PMC7558263 DOI: 10.3390/pathogens9090709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
African animal trypanosomosis are parasitic diseases caused by several protozoa of the genus Trypanosoma, transmitted by hematophagous insects, essentially tsetse flies, but also, less frequently by Tabanidae and Stomoxidae. They are geolocated in a part of the continent and affect livestock animals and carnivores; dogs are especially sensitive to them. They do not seem to present a zoonotic risk. Despite the chemical prevention with trypanocides for French military working dogs on mission in Côte d’Ivoire, a fatal case induced by Trypanosoma congolense in France after returning from Abidjan raises the question of an imported secondary focus. The clinical case was developed and the causative agent was confirmed by microscopy and PCR methods. The three necessary pillars to create a secondary potential focus are present: the parasite introduction in a new territory, the presence and the propagation vectors, and their proximity with sensitive species.
Collapse
|
14
|
Vourchakbé J, Tiofack AAZ, Mbida M, Simo G. Trypanosome infections in naturally infected horses and donkeys of three active sleeping sickness foci in the south of Chad. Parasit Vectors 2020; 13:323. [PMID: 32576240 PMCID: PMC7310289 DOI: 10.1186/s13071-020-04192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 02/02/2023] Open
Abstract
Background Equine trypanosomiases are complex infectious diseases with overlapping clinical signs defined by their mode of transmission. Despite their economic impacts, these diseases have been neglected by the scientific community, the veterinary authorities and regulatory organizations. To fill the observed knowledge gap, we undertook the identification of different trypanosome species and subspecies naturally infecting horses and donkeys within the Chadian sleeping sickness focus. The objective of the study was to investigate the potential role of these domestic animals as reservoirs of the human-infective Trypanosoma brucei gambiense. Method Blood samples were collected from 155 donkeys and 131 horses in three human African trypanosomiasis (HAT) foci in Chad. Rapid diagnostic test (RDT) and capillary tube centrifugation (CTC) test were used to search for trypanosome infections. DNA was extracted from each blood sample and different trypanosome species and subspecies were identified with molecular tools. Results From 286 blood samples collected, 54 (18.9%) and 36 (12.6%) were positive for RDT and CTC, respectively. PCR revealed 101 (35.3%) animals with trypanosome infections. The Cohen’s kappa coefficient used to evaluate the concordance between the diagnostic methods were low; ranging from 0.09 ± 0.05 to 0.48 ± 0.07. Trypanosomes of the subgenus Trypanozoon were the most prevalent (29.4%), followed by T. congolense forest (11.5%), Trypanosoma congolense savannah (4.9%) and Trypanosoma vivax (4.5%). Two donkeys and one horse from the Maro HAT focus were found with T. b. gambiense infections. No significant differences were observed in the infection rates of different trypanosomes between animal species and HAT foci. Conclusions This study revealed several trypanosome species and subspecies in donkeys and horses, highlighting the existence of AAT in HAT foci in Chad. The identification of T. b. gambiense in donkeys and horses suggests considering these animals as potential reservoir for HAT in Chad. The presence of both human-infective and human non-infective trypanosomes species highlights the need for developing joint control strategies for HAT and AAT.![]()
Collapse
Affiliation(s)
- Joël Vourchakbé
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.,Department of Chemistry-Biology-Geology, Faculty of Science and Technology, University of Doba, PO Box 03, Doba, Chad
| | - Arnol Auvaker Z Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Mpoame Mbida
- Laboratory of Applied Biology and Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon.
| |
Collapse
|
15
|
Mewamba EM, Farikou O, Kamga RMN, Magang MEK, Tume C, Tiofack AAZ, Ravel S, Simo G. Molecular identification of diminazene aceturate-resistant strains of Trypanosoma congolense in naturally infected domestic animals of Yoko in the centre region of Cameroon. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100405. [PMID: 32448545 DOI: 10.1016/j.vprsr.2020.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/15/2022]
Abstract
African animal trypanosomiases (AAT) remain the major constraint for livestock production, agriculture and food security in Africa. Although several control measures have been developed to fight AAT, the use of trypanocides remains the main strategy in most affected poor and rural communities. However, several studies have highlighted drug-resistant-trypanosome infections in many African countries, though this phenomenon is still not well described. This study aims to detect trypanosome species and the molecular profiles of drug-resistant-trypanosomes in naturally infected domestic animals of Yoko in the centre region of southern Cameroon. Therefore, in October 2017, 348 animals were blood sampled. The level of packed cell volume (PCV) was evaluated in each animal and trypanosome infections were investigated with the capillary tube centrifugation technique (CTC). Thereafter, DNA was extracted from blood samples and different trypanosome species were identified by PCR. The resistant/sensitive molecular profiles of trypanosomes for diminazene aceturate (DA) and isometamidium chloride (ISM) were investigated by PCR-RFLP. About 18.4% (64/348) of animals analyzed by PCR were found with trypanosome infections including Trypanosoma vivax, Trypanosoma brucei s.l. and Trypanosoma congolense forest and savannah. Trypanosoma congolense savannah was the predominant species with an infection rate of 15.2%. Between villages, significant (p˂0.0001) differences were found in the overall trypanosome infection rates. No molecular profile for ISM resistant-trypanosomes was identified. Conversely, about 88.9% (40/45) of T. congolense positive samples have shown molecular profiles of DA-resistant strains while the remaining 11.1% (5/45) showed mixed molecular profiles of resistant/sensitive strains. Results showed that the molecular profiles of DA-resistant strains of T. congolense in domestic animals of Yoko were widespread. This data needs to be confirmed by testing in vivo the drug susceptibilities of the trypanosome strains herein detected. In conclusion, appropriate future control measures are required. In addition to the intensification of vector control, ISM is advised for the treatment of animals infected by trypanosomes.
Collapse
Affiliation(s)
- Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | | | - Rolin Mitterran Ndefo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Melaine Eugenie Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | | | - Arnol Auvaker Zébazé Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon
| | - Sophie Ravel
- Institut de Recherche pour le Développement, UMR INTERTRYP, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO. Box 67, Dschang, Cameroon.
| |
Collapse
|
16
|
Fofana M, Mitri C, Diallo D, Rotureau B, Diagne CT, Gaye A, Ba Y, Dieme C, Diallo M, Dia I. Possible influence of Plasmodium/Trypanosoma co-infections on the vectorial capacity of Anopheles mosquitoes. BMC Res Notes 2020; 13:127. [PMID: 32131895 PMCID: PMC7057563 DOI: 10.1186/s13104-020-04977-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Objective In tropical Africa, trypanosomiasis is present in endemic areas with many other diseases including malaria. Because malaria vectors become more anthropo-zoophilic under the current insecticide pressure, they may be exposed to trypanosome parasites. By collecting mosquitoes in six study sites with distinct malaria infection prevalence and blood sample from cattle, we tried to assess the influence of malaria-trypanosomiasis co-endemicity on the vectorial capacity of Anopheles. Results Overall, all animal infections were due to Trypanosoma vivax (infection rates from 2.6 to 10.5%) in villages where the lowest Plasmodium prevalence were observed at the beginning of the study. An. gambiae s.l. displayed trophic preferences for human-animal hosts. Over 84 mosquitoes, only one was infected by Plasmodium falciparum (infection rate: 4.5%) in a site that displayed the highest prevalence at the beginning of the study. Thus, Anopheles could be exposed to Trypanosoma when they feed on infected animals. No Plasmodium infection was observed in the Trypanosoma-infected animals sites. This can be due to an interaction between both parasites as observed in mice and highlights the need of further studies considering Trypanosoma/Plasmodium mixed infections to better characterize the role of these infections in the dynamic of malaria transmission and the mechanisms involved.
Collapse
Affiliation(s)
- Maty Fofana
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Christian Mitri
- Unité Génétique et Génomique des Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Diawo Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 & Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Cheikh Tidiane Diagne
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Alioune Gaye
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Yamar Ba
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Constentin Dieme
- Unité Génétique et Génomique des Insectes Vecteurs, Institut Pasteur, Paris, France.,Wadsworth Center, New York State Department of Health, Slingerlands, NY, USA
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal
| | - Ibrahima Dia
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, 36 Avenue Pasteur, BP 220, Dakar, Sénégal.
| |
Collapse
|
17
|
Molecular identification of different trypanosome species in tsetse flies caught in the wildlife reserve of Santchou in the western region of Cameroon. Parasitol Res 2020; 119:805-813. [PMID: 32006230 DOI: 10.1007/s00436-020-06606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Addressing the problems linked to tsetse-transmitted trypanosomiases requires considerable data on tsetse distribution and trypanosome infections. Although efforts to map tsetse and trypanosome infections have been undertaken at continental level, published data are still rare in wildlife reserves of West and Central Africa. To fill this gap, data on tsetse distribution and trypanosome infections were generated in the wildlife reserve of Santchou. For this study, each tsetse caught was identified and its DNA extracted. Different trypanosome species were identified by PCR. Entomological and parasitological data were transported onto a satellite image in order to visualize their distributions. From 195 Glossina palpalis palpalis that were caught, 33.8% (66/195) carried trypanosome infections with 89.4% (59/66) of single infections and 10.6% (7/66) mixed infections. From the 66 flies with trypanosome infections, 54.5% (36/66), 27.3% (18/66) and 18.2% (12/66) were respectively due to Trypanosoma congolense, Trypanosoma brucei s.l. and Trypanosoma vivax. The global infection rates were 18.5% (36/195) for Trypanosoma congolense (forest and savannah), 9.2% (18/195) for Trypanosoma brucei s.l. and 6.1% (12/195) for Trypanosoma vivax. The maps generated show the distribution of tsetse and trypanosome infections. This study showed an active transmission of trypanosomes in the wildlife reserve of Santchou. The maps enabled to identify areas with high transmission risk and where control operations must be implemented in order to eliminate tsetse and the diseases that they transmit.
Collapse
|
18
|
Ebhodaghe F, Ohiolei J, Isaac C. A systematic review and meta-analysis of small ruminant and porcine trypanosomiasis prevalence in sub-Saharan Africa (1986 to 2018). Acta Trop 2018; 188:118-131. [PMID: 30179607 DOI: 10.1016/j.actatropica.2018.08.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
The appraisal of the disease burden of African animal trypanosomiasis (AAT) in some livestock at country level could invite a re-evaluation of trypanosomiasis-control strategy. This study thus estimates small ruminant and porcine trypanosomiasis prevalence in sub-Saharan African countries. It also describes Trypanosoma species prevalence in small ruminants and pigs and attempts identification of factors explaining between-study variations in prevalence. Articles reporting animal trypanosomiasis prevalence in sheep, goats, and pigs in countries within sub-Saharan Africa were retrieved from different databases (PubMed, Science Direct, Google Scholar, and African Journal Online) and reference lists of relevant literatures. A total of 85 articles from 13 countries published between 1986 and 2018 were included in the analysis. Overall random-effects meta-analytic mean prevalence estimates were: 7.67% (95% CI: 5.22-10.49), 5.84% (95% CI: 3.81-8.23), and 19.46% (95% CI: 14.61-24.80) respectively, for sheep, goats, and pigs with substantial heterogeneity (I2 = >95.00%. p < 0.0001) noted between studies. Ovine, caprine, and porcine prevalence were highest in Tanzania (91.67%. 95% CI: 76.50-99.84), Equatorial Guinea (27%. 95% CI: 0-81.09), and Cameroon (47%. 95% CI: 29.67-66.06), respectively. Trypanosoma brucei s. l., T. vivax, and T. congolense were the most prevalent in the livestock. Trypanosoma brucei subspecies (T. b. gambiense and T. b. rhodesiense) occurred in all three livestock being mostly prevalent in pigs. Country of study was a significant predictor of trypanosomiasis prevalence in each livestock in addition to time and sample size for caprine hosts, diagnostic technique for both caprine and ovine hosts, and sample size for porcine hosts. The pattern of animal trypanosomiasis prevalence in the studied livestock reflects their susceptibility to trypanosomal infections and tsetse fly host feeding preferences. In conclusion, sheep, goats, and especially pigs are reservoirs of human infective trypanosomes in sub-Saharan Africa; consequently, their inclusion in sleeping sickness control programmes could enhance the goal of the disease elimination.
Collapse
|
19
|
N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L, Ravel S, Deborggraeve S, Solano P, De Meeûs T, Bucheton B, Jamonneau V. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2017; 11:e0005993. [PMID: 29045405 PMCID: PMC5662240 DOI: 10.1371/journal.pntd.0005993] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/30/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. In Africa, significant efforts to control human African trypanosomiasis (HAT) over the past three decades have drastically reduced the prevalence of the disease and elimination seems today an achievable goal. However, potential animal reservoirs of Trypanosoma brucei gambiense may compromise this ambitious objective. In the Bonon and Sinfra HAT endemic foci in Côte d’Ivoire, no recent data are available about the prevalence of animal African trypanosomiasis (AAT). The aim of this study was to identify trypanosomes circulating in domestic animals in these two HAT foci using serological, parasitological and molecular tools. We showed that T. brucei s.l. and T. congolense were the most prevalent trypanosome species and that pigs and cattle were the most infected animals. Discordant results were observed between the T. b. gambiense specific molecular and serological tools and the presence of an animal reservoir for T. b. gambiense remains unclear. Nevertheless, improved control strategies can be proposed based on this study to reach HAT elimination and contribute to AAT control in the study areas.
Collapse
Affiliation(s)
- Martial Kassi N’Djetchi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Hamidou Ilboudo
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Justin Windingoudi Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Pierre Fauret
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Lingué Kouakou
- Programme National d’Elimination de la Trypanosomose Humaine Africaine, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Thierry De Meeûs
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| |
Collapse
|