1
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Cui Z, Wang J, Mao Z, Ling Z, Zhang J, Chen T. Long-term efficacy of deep brain stimulation of the subthalamic nucleus in patients with pharmacologically intractable epilepsy: A case series of six patients. Epileptic Disord 2023; 25:712-723. [PMID: 37518904 DOI: 10.1002/epd2.20129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Epilepsy is one of the widespread neurological illnesses, and about 20%-40% of epilepsy patients are pharmacoresistant. We aimed to assess the long-term efficacy of subthalamic nucleus (STN) deep brain stimulation (DBS) for drug-resistant epilepsy. METHODS We included pharmacologically intractable epilepsy patients who had STN-DBS at the Chinese People's Liberation Army General Hospital between June 2016 and December 2018. We retrospectively evaluated pre- and postoperative clinical outcomes, including seizure frequency, seizure type, anti-seizure medication, cognitive function, anatomical target coordinates, stimulation parameters, and adverse events following the surgical procedure. Six patients with a mean follow-up of 49.3 ± 10.2 months, were included. RESULTS Seizure frequency decreased by an average of 64.0% after STN-DBS at last year follow-up (p = .046), and one patient (1/6) achieved seizure-free status. For seizure type, anti-seizure medication, and cognitive function, there were no significant differences between pre-and post-operation (p > .05). In terms of stimulation parameters, the pulse width, amplitude, and frequency were 58.3 ± 9.4 μs, 2.5 ± .7 V, and 122.5 ± 15.7 Hz, respectively. None of the patients showed normal electroencephalography during the electroencephalography reexamination. There were no surgery-related complications, and chronic STN stimulation was generally well tolerated in five patients. However, one patient (1/6) had a difficulty of dyskinesia in the right arm. SIGNIFICANCE In conclusion, neuromodulation of the STN by DBS is a promising option for patients with pharmacologically intractable epilepsy, especially for whose epileptic zone originates mainly from the frontoparietal region and who are unsuitable for resective surgery. Further prospective multicenter studies with a larger sample size are necessary for further exploration.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Jianning Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Frameless Robot-Assisted Asleep Centromedian Thalamic Nucleus Deep Brain Stimulation Surgery in Patients with Drug-Resistant Epilepsy: Technical Description and Short-Term Clinical Results. Neurol Ther 2023; 12:977-993. [PMID: 36892782 DOI: 10.1007/s40120-023-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023] Open
Abstract
INTRODUCTION This purpose of this work is to give a detailed description of a surgical technique for frameless robot-assisted asleep deep brain stimulation (DBS) of the centromedian thalamic nucleus (CMT) in drug-resistant epilepsy (DRE). METHODS Ten consecutively enrolled patients who underwent CMT-DBS were included in the study. The FreeSurfer "Thalamic Kernel Segmentation" module and experience target coordinates were used for locating the CMT, and quantitative susceptibility mapping (QSM) images were used to check the target. The patient's head was secured with a head clip, and electrode implantation was performed with the assistance of the neurosurgical robot Sinovation®. After opening the dura, the burr hole was continuously flushed with physiological saline to stop air from entering the skull. All procedures were performed under general anesthesia without intraoperative microelectrode recording (MER). RESULTS The mean age of the patients at surgery and onset of seizures was 22 years (range 11-41 years) and 11 years (range 1-21 years), respectively. The median duration of seizures before CMT-DBS surgery was 10 years (2-26 years). CMT was successfully segmented, and its position was verified by experience target coordinates and QSM images in all ten patients. The mean surgical time for bilateral CMT-DBS in this cohort was 165 ± 18 min. The mean pneumocephalus volume was 2 cm3. The median absolute errors in the x-, y-, and z-axes were 0.7 mm, 0.5 mm, and 0.9 mm, respectively. The median Euclidean distance (ED) and radial error (RE) was 1.3 ± 0.5 mm and 1.0 ± 0.3 mm, respectively. No significant difference was found between right- and left-sided electrodes regarding the RE nor the ED. After a mean 12-month follow-up, the average reduction in seizures was 61%, and six patients experienced a ≥ 50% reduction in seizures, including one patient who had no seizures after the operation. All patients tolerated the anesthesia operation, and no permanent or serious complications were reported. CONCLUSIONS Frameless robot-assisted asleep surgery is a precise and safe approach for placing CMT electrodes in patients with DRE, shortening the surgery time. The segmentation of the thalamic nuclei enables the precise location of the CMT, and the flow of physiological saline to seal the burr holes is a good way to reduce the influx of air. CMT-DBS is an effective method to reduce seizures.
Collapse
|
5
|
Poulen G, Rolland A, Chan-Seng E, Sanrey E, Gélisse P, Crespel A, Coubes P. Microendoscopic transventricular deep brain stimulation of the anterior nucleus of the thalamus as a safe treatment in intractable epilepsy: A feasibility study. Rev Neurol (Paris) 2022; 178:886-895. [PMID: 36153255 DOI: 10.1016/j.neurol.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is proposed in patients with severe intractable epilepsy. When used, the transventricular approach increases the risk of bleeding due the anatomy around the entry point in the thalamus. To avoid such a complication, we used a transventricular microendoscopic technique. METHODS We performed a retrospective study of nine adult patients who were surgically treated for refractory epilepsy between 2010 and 2019 by DBS of the anterior thalamic nucleus. RESULTS Endoscopy provides a direct visual control of the entry point of the lead in the thalamus through the ventricle by avoiding ependymal vessels. No hemorrhage was recorded and accuracy was systematically checked by intraoperative stereotactic MRI. We reported a responder rate improvement in 88.9% of patients at 1 year and in 87.5% at 2 years. We showed a significant decrease in global seizure count per month one year after DBS (68.1%; P=0.013) leading to an overall improvement in quality of life. No major adverse effect was recorded during the follow-up. ANT DBS showed a prominent significant effect with a decrease of the number of generalized seizures. CONCLUSION We aimed at a better ANT/lead collimation using a vertical transventricular approach under microendoscopic monitoring. This technique permitted to demonstrate the safety and the accuracy of the procedure.
Collapse
Affiliation(s)
- G Poulen
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France.
| | - A Rolland
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| | - E Chan-Seng
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| | - E Sanrey
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| | - P Gélisse
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| | - A Crespel
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| | - P Coubes
- Unité "Pathologies cérébrales résistantes", department of neurosurgery, Montpellier university hospital, Montpellier, France; Unité de recherche sur les comportements et mouvements anormaux, department of neurosurgery, Montpellier university hospital, Montpellier, France
| |
Collapse
|
6
|
Characterizing the trends in patient demographics, complications, and short-term outcomes after deep brain stimulation procedures. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Torres Diaz CV, González-Escamilla G, Ciolac D, Navas García M, Pulido Rivas P, Sola RG, Barbosa A, Pastor J, Vega-Zelaya L, Groppa S. Network Substrates of Centromedian Nucleus Deep Brain Stimulation in Generalized Pharmacoresistant Epilepsy. Neurotherapeutics 2021; 18:1665-1677. [PMID: 33904113 PMCID: PMC8608991 DOI: 10.1007/s13311-021-01057-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/04/2023] Open
Abstract
Deep brain stimulation (DBS), specifically thalamic DBS, has achieved promising results to reduce seizure severity and frequency in pharmacoresistant epilepsies, thereby establishing it for clinical use. The mechanisms of action are, however, still unknown. We evidenced the brain networks directly modulated by centromedian (CM) nucleus-DBS and responsible for clinical outcomes in a cohort of patients uniquely diagnosed with generalized pharmacoresistant epilepsy. Preoperative imaging and long-term (2-11 years) clinical data from ten generalized pharmacoresistant epilepsy patients (mean age at surgery = 30.8 ± 5.9 years, 4 female) were evaluated. Volume of tissue activated (VTA) was included as seeds to reconstruct the targeted network to thalamic DBS from diffusion and functional imaging data. CM-DBS clinical outcome improvement (> 50%) appeared in 80% of patients and was tightly related to VTAs interconnected with a reticular system network encompassing sensorimotor and supplementary motor cortices, together with cerebellum/brainstem. Despite methodological differences, both structural and functional connectomes revealed the same targeted network. Our results demonstrate that CM-DBS outcome in generalized pharmacoresistant epilepsy is highly dependent on the individual connectivity profile, involving the cerebello-thalamo-cortical circuits. The proposed framework could be implemented in future studies to refine stereotactic implantation or the parameters for individualized neuromodulation.
Collapse
Affiliation(s)
| | - Gabriel González-Escamilla
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany.
| | - Dumitru Ciolac
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemitanu, State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
- Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Marta Navas García
- Department of Neurosurgery, University Hospital La Princesa, Madrid, Spain
| | | | - Rafael G Sola
- Department of Neurosurgery, University Hospital La Princesa, Madrid, Spain
| | - Antonio Barbosa
- Department of Neuroradiology, University Hospital La Princesa, Madrid, Spain
| | - Jesús Pastor
- Department of Clinical, Neurophysiology University Hospital La Princesa, Madrid, Spain
| | - Lorena Vega-Zelaya
- Department of Clinical, Neurophysiology University Hospital La Princesa, Madrid, Spain
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Rhine Main Neuroscience Network (rmn2), Mainz, Germany
| |
Collapse
|