1
|
Zhang Y, Deng Y, Zhou M, Wu B, Zhou J. Intraglandular dissemination: a special pathological feature. Front Oncol 2024; 14:1428274. [PMID: 39135992 PMCID: PMC11317368 DOI: 10.3389/fonc.2024.1428274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Intraglandular dissemination is an important pathological feature of thyroid cancer, yet the biological characteristics of this phenomenon remain relatively underexplored. This paper aims to provide a comprehensive overview of its biological behaviors, protein expressions, and identification methods. Several retrospective studies have found that thyroid cancers with intraglandular dissemination have higher rates of lymph node metastasis, capsule invasion, and vascular invasion, exhibiting more aggressive biological behavior. Immunohistochemistry results show abnormal expression of proteins such as FKBP5, CENPF, CX26, KIF11, PTK7, which are associated with poor prognosis in thyroid cancers with intraglandular dissemination, offering potential guidance for specific targeted therapy in the future. Moreover, adjunctive techniques including ultrasound, fine-needle aspiration, and genetic testing offer valuable support in accurately identifying these cases, facilitating moreproactive treatment and closer follow-up.
Collapse
Affiliation(s)
- Yubi Zhang
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Deng
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhou
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Thyroid and Breast Surgery, People’s Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Establishment of a Lymph Node Metastasis-Associated Prognostic Signature for Lung Adenocarcinoma. Genet Res (Camb) 2023; 2023:6585109. [PMID: 36793937 PMCID: PMC9904923 DOI: 10.1155/2023/6585109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 02/03/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer (NSCLC) with a low 5-year survival rate, which may be associated with the presence of metastatic tumors at the time of diagnosis, especially lymph node metastasis (LNM). This study aimed to construct a LNM-related gene signature for predicting the prognosis of patients with LUAD. Methods RNA sequencing data and clinical information of LUAD patients were extracted from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Samples were divided into metastasis (M) and nonmetastasis (NM) groups based on LNM status. Differentially expressed genes (DEGs) between M and NM groups were screened, and then WGCNA was applied to identify key genes. Furthermore, univariate Cox and LASSO regression analyses were conducted to construct a risk score model, and the predictive performance of model was validated by GSE68465, GSE42127, and GSE50081. The protein and mRNA expression level of LNM-associated genes were detected by human protein atlas (HPA) and GSE68465. Results A prognostic model based on eight LNM-related genes (ANGPTL4, BARX2, GPR98, KRT6A, PTPRH, RGS20, TCN1, and TNS4) was developed. Patients in the high-risk group had poorer overall survival than those in the low-risk group, and validation analysis showed that this model had potential predictive value for patients with LUAD. HPA analysis supported the upregulation of ANGPTL4, KRT6A, BARX2, RGS20 and the downregulation of GPR98 in LUAD compared with normal tissues. Conclusion Our results indicated that the eight LNM-related genes signature had potential value in the prognosis of patients with LUAD, which may have important practical implications.
Collapse
|
3
|
Wang AJ, Gao Y, Shi YY, Dai MY, Cai HB. A review of recent advances on single use of antibody-drug conjugates or combination with tumor immunology therapy for gynecologic cancer. Front Pharmacol 2022; 13:1093666. [PMID: 36618922 PMCID: PMC9813853 DOI: 10.3389/fphar.2022.1093666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have made significant progress in the treatment of various cancers. However, due to the low ICI responsive rate for the gynecologic cancer, ICI two-drug combination therapy tends to be a predominant way for clinical treatment. Antibody-drug conjugates, a promising therapeutic modality for cancer, have been approved by the FDA for breast cancer, lymphoma, multiple myeloma and gastric cancer. On September 2021, the FDA granted accelerated approval to tisotumab vedotin for patients with recurrent or metastatic cervical cancer. Currently, the role of therapy of ADCs on gynecologic tumors was also included in medication regimens. Now more than 30 ADCs targeting for 20 biomarkers are under clinical trials in the field, including monotherapy or combination with others for multiple lines of therapy. Some ADCs have been proved to enhance the antitumor immunity effect on both pre-clinical models and clinical trials. Therefore, combination of ADCs and ICIs are expected in clinical trials. In this review, we discuss current development of ADCs in gynecologic oncology and the combination effects of ICIs and ADCs.
Collapse
Affiliation(s)
- An-Jin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yu-Ying Shi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Meng-Yuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,*Correspondence: Meng-Yuan Dai, ; Hong-Bing Cai,
| | - Hong-Bing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China,Hubei Cancer Clinical Study Center, Wuhan, Hubei, China,*Correspondence: Meng-Yuan Dai, ; Hong-Bing Cai,
| |
Collapse
|
4
|
Miao B, Skopelitou D, Srivastava A, Giangiobbe S, Dymerska D, Paramasivam N, Kumar A, Kuświk M, Kluźniak W, Paszkowska-Szczur K, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23031295. [PMID: 35163215 PMCID: PMC8836109 DOI: 10.3390/ijms23031295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
Collapse
Affiliation(s)
- Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sara Giangiobbe
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuświk
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| |
Collapse
|
5
|
Cui NP, Qiao S, Jiang S, Hu JL, Wang TT, Liu WW, Qin Y, Wang YN, Zheng LS, Zhang JC, Ma YP, Chen BP, Shi JH. Protein Tyrosine Kinase 7 Regulates EGFR/Akt Signaling Pathway and Correlates With Malignant Progression in Triple-Negative Breast Cancer. Front Oncol 2021; 11:699889. [PMID: 34367983 PMCID: PMC8339706 DOI: 10.3389/fonc.2021.699889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/07/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, is associated with high invasiveness, high metastatic occurrence and poor prognosis. Protein tyrosine kinase 7 (PTK7) plays an important role in multiple cancers. However, the role of PTK7 in TNBC has not been well addressed. This study was performed to evaluate the role of PTK7 in the progression of TNBC. Methods Correlation of PTK7 expression with clinicopathological parameters was assessed using tissue microarray immunohistochemistry (IHC) staining in 280 patients with breast cancer. PTK7 expression in TNBC (MDA-MB-468, MDA-MB-436 and MDA-MB-231) and non-TNBC (MCF7 and SK-BR-3) breast cancer cell lines were examined using immunoblotting assay. PTK7 correlated genes in invasive breast carcinoma were analyzed using cBioPortal breast cancer datasets including 1,904 patients. PTK7 overexpressed or knockdown TNBC cell lines (MDA-MB-468 and MDA-MB-436) were used to analyze the potential roles of PTK7 in TNBC metastasis and tumor progression. A TNBC tumor bearing mouse model was established to further analyze the role of PTK7 in TNBC tumorigenicity in vivo. Results PTK7 is highly expressed in breast cancer and correlates with worse prognosis and associates with tumor metastasis and progression in TNBC. Co-expression analysis and gain- or loss-of-function of PTK7 in TNBC cell lines revealed that PTK7 participates in EGFR/Akt signaling regulation and associated with extracellular matrix organization and migration genes in breast cancer, including COL1A1, FN1, WNT5B, MMP11, MMP14 and SDC1. Gain- or loss-of-function experiments of PTK7 suggested that PTK7 promotes proliferation and migration in TNBC cell lines. PTK7 knockdown MDA-MB-468 cell bearing mouse model further demonstrated that PTK7-deficiency inhibits TNBC tumor progression in vivo. Conclusion This study identified PTK7 as a potential marker of worse prognosis in TNBC and revealed PTK7 promotes TNBC metastasis and progression via EGFR/Akt signaling pathway.
Collapse
Affiliation(s)
- Nai-Peng Cui
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China.,Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shu Qiao
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Shan Jiang
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Lin Hu
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ting-Ting Wang
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Wen-Wen Liu
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Yan Qin
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-Shuang Zheng
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jin-Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding, China
| | - Yong-Ping Ma
- Department of Stomatology, Baoding Second Hospital, Baoding, China
| | - Bao-Ping Chen
- Department of Breast Surgery, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Jian-Hong Shi
- Institute of Life Science and Green Development, Hebei University, Baoding, China.,Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
6
|
In Silico and In Vitro Analysis of lncRNA XIST Reveals a Panel of Possible Lung Cancer Regulators and a Five-Gene Diagnostic Signature. Cancers (Basel) 2020; 12:cancers12123499. [PMID: 33255394 PMCID: PMC7760781 DOI: 10.3390/cancers12123499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNA) have been associated with a number of diseases including cancer. A well-studied lncRNA called XIST (X-inactive specific transcript) acts as a major effector of the X-inactivation process. It is expressed on the inactive X chromosome providing a dosage equivalence between males and females. Recently XIST has been implicated in the development of lung cancer. Using a bioinformatics approach, we demonstrate the XIST is over-expressed in female patients compared to males. When XIST gene was silenced in two different cell lines (of male and female origin), a number of genes were differentially expressed; playing a role in signal transduction pathways, energy balance and metabolism, thus providing a better insight of the role of this lncRNA in cancer. Finally, we showed that expression of XIST with another 4 genes provided a strong diagnostic potential to discriminate lung cancer from healthy controls. Abstract Long non-coding RNAs (lncRNAs) perform a wide functional repertoire of roles in cell biology, ranging from RNA editing to gene regulation, as well as tumour genesis and tumour progression. The lncRNA X-inactive specific transcript (XIST) is involved in the aetiopathogenesis of non-small cell lung cancer (NSCLC). However, its role at the molecular level is not fully elucidated. The expression of XIST and co-regulated genes TSIX, hnRNPu, Bcl-2, and BRCA1 analyses in lung cancer (LC) and controls were performed in silico. Differentially expressed genes (DEGs) were determined using RNA-seq in H1975 and A549 NSCLC cell lines following siRNA for XIST. XIST exhibited sexual dimorphism, being up-regulated in females compared to males in both control and LC patient cohorts. RNA-seq revealed 944 and 751 DEGs for A549 and H1975 cell lines, respectively. These DEGs are involved in signal transduction, cell communication, energy pathways, and nucleic acid metabolism. XIST expression associated with TSIX, hnRNPu, Bcl-2, and BRCA1 provided a strong collective feature to discriminate between controls and LC, implying a diagnostic potential. There is a much more complex role for XIST in lung cancer. Further studies should concentrate on sex-specific changes and investigate the signalling pathways of the DEGs following silencing of this lncRNA.
Collapse
|