1
|
Kim S, Kim K, Koh MY, Do M, Lee MS, Ryu JH, Lee H. Coagulant Protein-Free Blood Coagulation Using Catechol-Conjugated Adhesive Chitosan/Gelatin Double Layer. Adv Healthc Mater 2024; 13:e2304004. [PMID: 38334241 DOI: 10.1002/adhm.202304004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Since the discovery of polyphenolic underwater adhesion in marine mussels, researchers strive to emulate this natural phenomenon in the development of adhesive hemostatic materials. In this study, bio-inspired hemostatic materials that lead to pseudo-active blood coagulation, utilizing traditionally passive polymer matrices of chitosan and gelatin are developed. The two-layer configuration, consisting of a thin, blood-clotting catechol-conjugated chitosan (CHI-C) layer and a thick, barrier-functioning gelatin (Geln) ad-layer, maximizes hemostatic capability and usability. The unique combination of coagulant protein-free condition with CHI-C showcases not only coagulopathy-independent blood clotting properties (efficacy) but also exceptional clinical potential, meeting all necessary biocompatibility evaluation (safety) without inclusion of conventional coagulation triggering proteins such as thrombin or fibrinogen. As a result, the CHI-C/Geln is approved by the Ministry of Food and Drug Safety (MFDS, Republic of Korea) as a class II medical device. Hemostatic efficacy observed in multiple animal models further demonstrates the superiority of CHI-C/Geln sponges in achieving quick hemostasis compared to standard treatments. This study not only enriches the growing body of research on mussel-inspired materials but also emphasizes the potential of biomimicry in developing advanced medical materials, contributing a promising avenue toward development of readily accessible and affordable hemostatic materials.
Collapse
Affiliation(s)
- Soomi Kim
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Keumyeon Kim
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Mi-Young Koh
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Minjae Do
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moon Sue Lee
- R&D Center, InnoTherapy Inc., 25 Seonyu-ro 13-gil, Yeongdeungpo-gu, Seoul, 07282, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Smart Convergence Materials Analysis Center, Wonkwang University, 460 Iksan-daero, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|