1
|
Kozłowska E, Urbaniak M, Hoc N, Grzeszczuk J, Dymarska M, Stępień Ł, Pląskowska E, Kostrzewa-Susłow E, Janeczko T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci Rep 2018; 8:13449. [PMID: 30194436 PMCID: PMC6128828 DOI: 10.1038/s41598-018-31665-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/05/2018] [Indexed: 12/31/2022] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus used as a biological control agent. It is a well-known biocatalyst for the transformation of steroid compounds. Hydroxylations at the 7α or 11α position and oxidation to D-homo lactones are described in the literature. In our study, we examined the diversity of metabolism of five different B. bassiana strains and compared them to already known pathways. According to the literature, 7α and 11α-hydroxy derivatives as well as 3β,11α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one have been observed. Here we describe new DHEA metabolic pathways and two products not described before: 3β-hydroxy-17a-oxa-D-homo-androst-5-en-7,17-dione and 3β,11α-dihydroxyandrost-5-en-7,17-dione. We also used for the first time another species from this genus, Beauveria caledonica, for steroid transformation. DHEA was hydroxylated at the 7α, 7β and 11α positions and then reactions of oxidation and reduction leading to 3β,11α-dihydroxyandrost-5-en-7,17-dione were observed. All tested strains from the Beauveria genus effectively transformed the steroid substrate using several different enzymes, resulting in cascade transformation.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Monika Urbaniak
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Natalia Hoc
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jakub Grzeszczuk
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Łukasz Stępień
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Elżbieta Pląskowska
- Department of Plant Protection, Division of Phytopathology and Mycology, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
2
|
STÁRKA L. The Origin of 7α-Hydroxy-Dehydroepiandrosterone and Its Physiological Role: a History of Discoveries. Physiol Res 2017; 66:S285-S294. [DOI: 10.33549/physiolres.933717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nearly 60 years has elapsed since the first isolation and identification of 7α-hydroxy-dehydroepiandrosterone, and in that time much information has been gained on its occurrence, metabolism, ontogeny, immunomodulatory activity, cell proliferation, cortisol control in local tissues and neuroactivity. Additional knowledge about this steroid may elucidate its role in obesity, neurodegenerative disturbances such as Alzheimer’s disease, or psychiatric disorders such as schizophrenia or depression. This review aims to provide a comprehensive summary of the available literature on 7α-hydroxy-dehydroepiandrosterone.
Collapse
Affiliation(s)
- L. STÁRKA
- Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
3
|
Dušková M, Kolátorová Sosvorová L, Hill M, Šimůnková K, Jandíková H, Pospíšilová H, Šrámková M, Kosák M, Kršek M, Hána V, Stárka L. The Response of C19 Δ5-steroids to ACTH Stimulation and Hypoglycemia in Insulin Tolerance Test for Adrenal Insufficiency. Prague Med Rep 2016; 117:98-107. [DOI: 10.14712/23362936.2016.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Studies on the time course of ACTH- or insulin-induced hypoglycemia stimulating adrenal androgens are usually limited to dehydroepiandrosterone and/or its sulphate. Our data on dehydroepiandrosterone (DHEA) and its hydroxylated metabolites clearly show that measurements of DHEA and its sulphate (DHEAS) are valuable markers of the integrity of the HPA (hypothalamus-pituitary-adrenal) axis. Assessments of HPA function should rely on measurements of baseline and/or stimulated serum cortisol concentrations, and C19Δ5-steroids may provide additional information. The art of stimulation of 7- and 16-hydroxylated metabolites of DHEA can help our understanding of the formation sequence of these compounds.
Collapse
|
4
|
Stárka L, Rácz B, Šrámková M, Hill M, Dušková M. Daily profiles of dehydroepiandrosterone and its hydroxylated metabolites with respect to food intake. Prague Med Rep 2015; 116:40-8. [PMID: 25923969 DOI: 10.14712/23362936.2015.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Eight women of reproductive age with normal body mass index were given 5 standardised meals, and their hormonal milieu was determined during the course of the day. Plasma from 12 withdrawals was analysed for dehydroepiandrosterone and its 7- and 16-hydroxylated metabolites. Overall, there was a maximum in the levels of steroid hormones in the morning, followed by decreases throughout the day. There was also an additional significant decrease found for dehydroepiandrosterone and its 7α-hydroxyderivative in association with the consumption of main meals, but not for the 7β-isomer or 16α-hydroxyderivative.
Collapse
Affiliation(s)
| | - Beata Rácz
- Institute of Endocrinology, Prague, Czech Republic
| | | | - Martin Hill
- Institute of Endocrinology, Prague, Czech Republic
| | | |
Collapse
|
5
|
Tchernof A, Mansour MF, Pelletier M, Boulet MM, Nadeau M, Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J Steroid Biochem Mol Biol 2015; 147:56-69. [PMID: 25448733 DOI: 10.1016/j.jsbmb.2014.11.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 12/26/2022]
Abstract
Over the past decade, adipose tissues have been increasingly known for their endocrine properties, that is, their ability to secrete a number of adipocytokines that may exert local and/or systemic effects. In addition, adipose tissues have long been recognized as significant sites for steroid hormone transformation and action. We hereby provide an updated survey of the many steroid-converting enzymes that may be detected in human adipose tissues, their activities and potential roles. In addition to the now well-established role of aromatase and 11β-hydroxysteroid dehydrogenase (HSD) type 1, many enzymes have been reported in adipocyte cell lines, isolated mature cells and/or preadipocytes. These include 11β-HSD type 2, 17β-HSDs, 3β-HSD, 5α-reductases, sulfatases and glucuronosyltransferases. Some of these enzymes are postulated to bear relevance for adipose tissue physiology and perhaps for the pathophysiology of obesity. This elaborate set of steroid-converting enzymes in the cell types of adipose tissue deserves further scientific attention. Our work on 20α-HSD (AKR1C1), 3α-HSD type 3 (AKR1C2) and 17β-HSD type 5 (AKR1C3) allowed us to clarify the relevance of these enzymes for some aspects of adipose tissue function. For example, down-regulation of AKR1C2 expression in preadipocytes seems to potentiate the inhibitory action of dihydrotestosterone on adipogenesis in this model. Many additional studies are warranted to assess the impact of intra-adipose steroid hormone conversions on adipose tissue functions and chronic conditions such as obesity, diabetes and cancer.
Collapse
Affiliation(s)
- André Tchernof
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada; Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.
| | - Mohamed Fouad Mansour
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Mélissa Pelletier
- Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | - Marie-Michèle Boulet
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada; École de Nutrition, Université Laval, Québec, Canada
| | - Mélanie Nadeau
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Canada
| | - Van Luu-The
- Endocrinologe et Néphrologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| |
Collapse
|
6
|
MÁČOVÁ L, BIČÍKOVÁ M, ZAMRAZILOVÁ H, HILL M, KAZIHNITKOVÁ H, SEDLÁČKOVÁ B, STÁRKA L. Reduced Levels of Circulating 7α-Hydroxy-Dehydroepiandrosterone in Treated Adolescent Obese Patients. Physiol Res 2014; 63:95-101. [DOI: 10.33549/physiolres.932540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elevated levels of glucocorticoids lead to the development of obesity and metabolic syndrome. Local glucocorticoid levels are regulated through the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD 1), an enzyme that regenerates active cortisol from inert cortisone. Increased expression of 11β-HSD 1 in adipose tissue promotes higher body mass index (BMI), insulin resistance, hypertension, and dyslipidemia. Human 11β-HSD 1 is also responsible for inter-conversion of 7-hydroxylate metabolites of dehydroepiandrosterone (7-OH-DHEA) to their 7-oxo-form. To better understanding the mechanism of the action, we focused on 7-OH- and 7-oxo-DHEA, and their circulating levels during the reductive treatment in adolescent obese patients. We determined plasma levels of 7α-OH-DHEA, 7β-OH-DHEA, and 7-oxo-DHEA in 55 adolescent patients aged 13.04-15.67 years, BMI greater than 90th percentile. Samples were collected before and after one month of reductive therapy. Circulating levels of 7α-OH-DHEA decreased during the reductive therapy from 1.727 (1.614; 1.854, transformed mean with 95 % confidence interval) to 1.530 nmol/l (1.435; 1.637, p<0.05) in girls and from 1.704 (1.583; 1.842) to 1.540 nmol/l (1.435; 1.659, p<0.05) in boys. With regard to the level of 7-oxo-DHEA, a significant reduction from 1.132 (1.044; 1.231) to 0.918 nmol/l (0.844; 1.000, p<0.05) was found after the treatment, but only in boys. No significant difference in 7β-OH-DHEA levels was observed. In conclusions, diminished levels of 7α-OH-DHEA indicate its possible effect on activity of 11β-HSD 1. Further studies are necessary to clarify whether competitive substrates for 11β-HSD 1 such as 7α-OH-DHEA could inhibit production of glucocorticoids and may be involved in metabolic processes leading to reduction of obesity.
Collapse
Affiliation(s)
- L. MÁČOVÁ
- Institute of Endocrinology, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
7
|
Gottfried-Blackmore A, Jellinck PH, Vecchiarelli HA, Masheeb Z, Kaufmann M, McEwen BS, Bulloch K. 7α-hydroxylation of dehydroepiandrosterone does not interfere with the activation of glucocorticoids by 11β-hydroxysteroid dehydrogenase in E(t)C cerebellar neurons. J Steroid Biochem Mol Biol 2013; 138:290-7. [PMID: 23851218 DOI: 10.1016/j.jsbmb.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 10/26/2022]
Abstract
The neuroprotective action of dehydroepiandrosterone (DHEA) in the absence of a known specific receptor has been attributed to its metabolism by different cell types in the brain to various steroids, with a preference to its 7-hydroxylated products. The E(t)C cerebellar granule cell line converts DHEA almost exclusively to 7α-hydroxy-DHEA (7α-OH-DHEA). It has been postulated that DHEA's 7-OH and 7-oxo metabolites can decrease glucocorticoid levels by an interactive mechanism involving 11β-hydroxysteroid dehydrogenase (11β-HSD). In order to study the relationship of 7-hydroxylation of DHEA and glucocorticoid metabolism in intact brain cells, we examined whether E(t)C cerebellar neurons, which are avid producers of 7α-OH-DHEA, could also metabolize glucocorticoids. We report that E(t)C neuronal cells exhibit 11β-HSD1 reductase activity, and are able to convert 11-dehydrocorticosterone into corticosterone, whereas they do not demonstrate 11β-HSD2 dehydrogenase activity. Consequently, E(t)C cells incubated with DHEA did not yield 7-oxo- or 7β-OH-DHEA. Our findings are supported by the reductive environment of E(t)C cells through expression of hexose-6-phosphate dehydrogenase (H6PDH), which fosters 11β-HSD1 reductase activity. To further explore the role of 7α-OH-DHEA in E(t)C neuronal cells, we examined the effect of preventing its formation using the CYP450 inhibitor ketoconazole. Treatment of the cells with this drug decreased the yield of 7α-OH-DHEA by about 75% without the formation of alternate DHEA metabolites, and had minimal effects on glucocorticoid conversion. Likewise, elevated levels of corticosterone, the product of 11β-HSD1, had no effect on the metabolic profile of DHEA. This study shows that in a single population of whole-cells, with a highly reductive environment, 7α-OH-DHEA is unable to block the reducing activity of 11β-HSD1, and that 7-hydroxylation of DHEA does not interfere with the activation of glucocorticoids. Our investigation on the metabolism of DHEA in E(t)C neuronal cells suggest that other alternate mechanisms must be at play to explain the in vivo anti-glucocorticoid properties of DHEA and its 7-OH-metabolites.
Collapse
Affiliation(s)
- Andres Gottfried-Blackmore
- Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|