1
|
Li X, Zhang C, Liu C, Ma Y, Shi Y, Ye Y, Ma X, Liu Y, Luo X, Lin F, Wang J, Tao J, Lun J, Cai H, Hu Z. Principle and design of clinical efficacy observation of extracorporeal cardiac shock wave therapy for patients with myocardial ischemia-reperfusion injury: A prospective randomized controlled trial protocol. PLoS One 2023; 18:e0294060. [PMID: 38064454 PMCID: PMC10707494 DOI: 10.1371/journal.pone.0294060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acute ST-segment elevation myocardial infarction (STEMI) remains a serious life threatening event with a poor prognosis due to myocardial ischemia/reperfusion injury despite coronary revascularization. Extracorporeal cardiac shock wave (ECSW) is a safe, effective and non-invasive new method for the treatment of cardiovascular diseases. The current results show that extracorporeal cardiac shock wave provides a new treatment option for patients with severe and advanced coronary heart disease. However, there are relatively few clinical studies on the application of in vitro cardiac shock waves in patients with myocardial ischemia-reperfusion injury. We hypothesized that extracorporeal cardiac shock therapy would also be effective in reducing clinical endpoints in patients with STEMI reperfusion. OBJECTIVE This study is order to provide a new therapeutic method for patients with myocardial ischemia-reperfusion injury and reveal the possible mechanism of ECSW for ischemia-reperfusion injury. METHODS AND MATERIALS CEECSWIIRI is a single-center, prospective randomized controlled trial that plans to enroll 102 eligible patients with acute ST-segment elevation myocardial infarction reperfusion. Eligible patients with STEMI reperfusion will be randomly divided into external cardiac shock therapy (ECSW) trial group and blank control group. The blank control group will receive optimal drug therapy, and the experimental group will receive optimal drug therapy combined with ECSW. The shock wave treatment plan will be 3-month therapy, specifically 1 week of treatment per month, 3 weeks of rest, 3 times of ECSW in each treatment week, respectively on the first day, the third day and the fifth day of the treatment week, lasting for 3 months and follow-up for 2 years. The primary endpoint will be to assess the 2-year improvement in all-cause death, re-hospitalization due to cardiovascular disease, major unintentional cerebrovascular events, including cardiogenic death, myocardial infarction, heart failure, arrhythmia, emergency coronary revascularization, and stroke in patients with STEMI reperfusion. Secondary endpoints will include improvements in angina pectoris, quality of life, cardiac structure and function, coronary microcirculation, and endothelial progenitor cell-derived miR-140-3p in relation to survival outcomes. TRIAL REGISTRATION NUMBER ClinicalTrial.gov.org PRS:NCT05624203; Date of registration: November 12, 2022.
Collapse
Affiliation(s)
- Xianbin Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chaoyue Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Changzhi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yujia Ye
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xuejuan Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixi Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiang Luo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fanru Lin
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jincheng Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jifa Tao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinping Lun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
JIN X, WU B, WU H, XU D. Effectiveness of Shenshu Guanxin recipe granules for improving exercise tolerance in patients with stable angina pectoris: a randomized, double-blind, placebo-controlled trial. J TRADIT CHIN MED 2023; 43:1227-1233. [PMID: 37946485 PMCID: PMC10623256 DOI: 10.19852/j.cnki.jtcm.20231008.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To assess the effectivess of Shenshu Guanxin recipe granules (, SGR) in improving exercise tolerance and the quality of life in patients with Stable Angina Pectoris (SAP). METHODS A total of 189 patients were consecutively enrolled between December 2012 and December 2014. The included patients were randomly assigned to SGR and placebo groups. The primary endpoints included mainly the results of treadmill exercise test and Seattle Angina Questionnaire (SAQ) during 12 weeks of treatment. RESULTS After 12 weeks of treatment, SGR extended the time of exercise-induced ST-segment depression of 0.1 MV, lowered the maximum ST-segment depression, and shortened the duration of ST-segment depression in patients with SAP in southern China. Besides, the study also proved that SGR could improve the quality of life and functional status of patients with SAP. CONCLUSIONS SGR showed a positive effect on exercise tolerance compared with the placebo besides optimal medical therapy. Also, the study proved that SGR could improve the SAQ score of the patients.
Collapse
Affiliation(s)
- Xiao JIN
- 1 Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Bingxin WU
- 2 Department of Cardiology, Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Huanlin WU
- 3 Department of Cardiology, Dongzhimen Hosipital, Beijing 100029, China
| | - Danping XU
- 4 Department of Traditional Chinese Medicine, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
3
|
Burneikaitė G, Shkolnik E, Puronaitė R, Zuozienė G, Petrauskienė B, Misonis N, Kazėnaitė E, Laucevičius A, Smih F, Rouet P, Čelutkienė J. The association of catestatin and endocan with the effects of cardiac shock wave therapy: Biomarker sub-study of the randomized, sham procedure-controlled trial. Front Cardiovasc Med 2023; 10:1004574. [PMID: 36910537 PMCID: PMC9996196 DOI: 10.3389/fcvm.2023.1004574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Cardiac shock-wave therapy (CSWT) is a non-invasive regenerative treatment method based on low-frequency ultrasound waves, which stimulate angiogenesis. Current data about the effects of revascularization procedures on angiogenesis biomarkers is limited. Recently, an association of catestatin and endocan with coronary collateral development was shown in several trials. In this study, we aimed to evaluate the impact of CSWT on the dynamics of catestatin and endocan levels and to assess their correlation with parameters of myocardial perfusion and function. Methods Prospective, randomized, triple-blind, sham procedure-controlled study enrolled 72 adult subjects who complied with defined inclusion criteria (NCT02339454). We measured biomarkers in 48 patients with stable angina (24 patients of CSWT group, 24 patients of sham-procedure group). Additionally, patients were divided into responders and non-responders according to improvement in myocardial perfusion and/or contractility assessed by myocardial scintigraphy and dobutamine echocardiography (30 and 13 patients, respectively). The blood samples were collected at baseline, after the last treatment procedure (9th treatment week) and at 6-month follow-up to evaluate biomarkers concentration and stored at -80° until analysis. Serum catestatin and endocan levels were determined by commercially available ELISA kits. Results Serum catestatin concentration significantly increased in all patients. While endocan levels significantly decreased in the responders sub-group. The increase in catestatin levels at 9th week and 6 months was positively associated with improvement in summed difference score (rho = 0.356, p = 0.028) and wall motion score, WMS (rho = 0.397, p = 0.009) at 6 months in the whole study population. Meanwhile, the decrease in endocan levels over 6 months was positively correlated with improvement in WMS at 3- and 6- months (r = 0.378, p = 0.015 and r = 0.311, p = 0.045, respectively). ROC analysis revealed that a change at 6 months in catestatin and endocan levels significantly predicted improvement in myocardial perfusion and contractile function with 68.9% sensitivity and 75.0% specificity (p = 0.039) and 51.7% sensitivity, and 91.7% specificity (p = 0.017), respectively. Baseline endocan concentration and its change at 6 months predicted response to CSWT with 68.8% sensitivity and 83.3% specificity (p = 0.039) and 81.3% sensitivity and 100% specificity (p < 0.0001), respectively. Conclusion This study demonstrates the association of increase in catestatin and decrease in endocan levels with the improvement of myocardial perfusion and contractile function. The potential predictive value of catestatin and endocan dynamics for the response to regenerative therapy is shown.
Collapse
Affiliation(s)
- Greta Burneikaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- *Correspondence: Greta Burneikaitė ✉
| | - Evgeny Shkolnik
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Roma Puronaitė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Mathematics and Informatics, Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Gitana Zuozienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Birutė Petrauskienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Nerijus Misonis
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edita Kazėnaitė
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Fatima Smih
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
- Spartacus-Biomed, Auterive, France
| | - Philippe Rouet
- LA Maison de la Mitochondrie (LAMMI), Obesity and Heart Failure: Molecular and Clinical Investigations, INSERM Occitanie, Toulouse, France
- INI-CRCT-FCRIN, GREAT Networks, Toulouse, France
| | - Jelena Čelutkienė
- Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Centre of Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
4
|
Jia N, Zhang R, Liu B, Liu B, Qi X, Lan M, Liu J, Zeng P, Chen C, Li W, Guo Y, Yao Z, He Q. Efficacy and safety of cardiac shock wave therapy for patients with severe coronary artery disease: A randomized, double-blind control study. J Nucl Cardiol 2022; 29:2404-2419. [PMID: 34476776 DOI: 10.1007/s12350-021-02768-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/15/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Previous studies proved the efficacy of cardiac shock wave therapy (CSWT) for coronary artery disease (CAD) patients who are not candidate for reperfusion therapy. Randomized control trials are limited. We try to explore the efficacy and safety of CSWT for patients with severe CAD. METHODS Thirty patients with severe CAD who had obvious ischemia on myocardial perfusion imaging (MPI) were enrolled and randomly assigned to the CSWT group or the control group. They had received optimal medication treatment for at least three months. Nine sessions of shock wave therapy were conducted over 3 months. CSWT group received the real treatment, while the control group received the pseudo-treatment. Clinical symptom, imaging outcomes and safety parameters were compared between two groups. RESULTS After treatment, regional stress score (P = .023), improvement rate (IR) of ischemic area (IA) stress (P < .001) and IR of IA difference (P < .001) were significantly favor CSWT group. The interaction of summed rest score (P < .001), summed stress score (P = .004), summed difference score (P = .036) were significantly improved in the CSWT group compared to the control group. Seattle angina questionnaire, quality of life (QOL) and the distance of six-minute walking test (6MWT) were improved in both groups without significant difference between them. Hemodynamic parameters were stable during procedure. Myocardial injury markers showed no changes in two groups. CONCLUSIONS Our study demonstrated CSWT could effectively and safely improve myocardial perfusion in patients with severe CAD. Clinical symptom, QOL and 6MWT were all improved after treatment, but no significant difference between two groups.
Collapse
Affiliation(s)
- Na Jia
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
- Graduate School of Peking, Union Medical College, Beijing, People's Republic of China
| | - Ruisheng Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Baoyi Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Bing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Xin Qi
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Ming Lan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Junmeng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China
| | - Ping Zeng
- Department of Epidemiology, The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, National Center of Gerontology, National Health Commission, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Congxia Chen
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenchan Li
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yue Guo
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhiming Yao
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qing He
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatrics Medicine, Chinese Academy of Medical Sciences, 1 Dahua Road, Dongdan, Dongcheng, Beijing, 100730, People's Republic of China.
- Graduate School of Peking, Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Qiu Q, Chen S, Qiu Y, Mao W. Cardiac Shock Wave Therapy in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:932193. [PMID: 35958405 PMCID: PMC9358011 DOI: 10.3389/fcvm.2022.932193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Objective Coronary artery disease (CAD) has been one of the leading causes of morbidity and mortality worldwide. Cardiac shock wave therapy (CSWT) is a novel and non-invasive therapy for CAD. Therefore, we conducted a systematic review and meta-analysis to evaluate the efficacy of CSWT on CAD. Methods and results We performed a comprehensive search of electronic databases such as PubMed, Embase, the Cochrane Library, and Wanfang Data in October 2021. The results were reported as weighted mean difference (WMD) with a 95% confidence interval (CI). Statistical heterogeneity scores were assessed with the standard Cochran's Q test and the I 2 statistic. A total of 8 randomized trials and 2 prospective cohort studies, together involving 643 patients (n = 336 CSWT and n = 307 control), were included in our study. Eight studies with 371 patients showed significantly improved rest left ventricular ejection fraction (LVEF) with CSWT as compared to that of the control group (WMD 3.88, 95% CI 1.53-6.23, p = 0.001, I 2 = 51.2%). Seven studies with 312 patients reported left ventricular internal diameter in diastole (LVIDd) were markedly decreased in the CSWT group compared to the control group (WMD -1.81, 95% CI -3.23 to -0.39, p = 0.012, I 2 = 20.3%). The summed stress score significantly favored the CSWT group (WMD -3.76, 95% CI -6.15 to -1.37, p = 0.002, I 2 = 56.8%), but there was no significant difference for the summed rest score. Our data were acquired from studies without a perceived high risk of bias, so plausible bias is unlikely to seriously affect the main findings of the current study. Conclusion Based on data from our present meta-analysis, CSWT was shown to moderately improve myocardial perfusion and cardiac function among patients with CAD, which would provide the clinicians with a meaningful and valuable option. Systematic Review Registration The meta-analysis was registered on the Open Science Framework (OSF) (https://osf.io/r2xf9).
Collapse
Affiliation(s)
| | | | | | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Akbar MR, Adiputro DL, Tiksnadi BB, Soeriadi EA, Hasan M, Muttaqien F, Raharjo PP, Nurazizah E, Tarsidin NF. Case Series: Extracorporeal Shockwave Myocardial Revascularization Therapy Improves Ischemic Response, Functional Capacity, and Quality of Life in Indicated CABG-Stable Angina Pectoris Patients. Front Cardiovasc Med 2022; 9:799834. [PMID: 35224043 PMCID: PMC8874125 DOI: 10.3389/fcvm.2022.799834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionExtracorporeal shockwave myocardial revascularization (ESMR) is included in the guidelines only for patients with refractory angina pectoris having no option for invasive revascularization. We intend to report a case series with ESMR therapy is indicated patients with coronary artery bypass grafting-stable angina pectoris (CABG-SAP) who refuse the surgery, irrespective of angina symptoms.MethodsWe review medical records of patients with SAP admitted to ESMR therapy in Dr. Hasan Sadikin General Hospital, Bandung, Indonesia from January 2018 to December 2019. Recorded variables at baseline and after therapy extracted, namely, (1) ischemic response, double product, and (2) functional capacity measured as metabolic equivalent (MET) using treadmill test; (3) six-minute walking test distance achieved; and (4) quality of life using SF-36 Questionnaire.ResultsA total of four indicated patients with CABG-SAP from 50 to 75 years old were included in this study. At baseline, one patient is CCS class I and two patients are CCS class II with SDS ranging from 3 to 17. Ischemic response improved in all the patients. The double product improved in patient 1 9,600–14,872 mm Hg × bpm, patient 2 9,460–10,640 mm Hg × bpm, and patient 4 17,220–20,480 mm Hg × bpm. The functional capacity improved in Patient 1 8.07–8.91 METs, patient 2 1.91–4.01 METs, patient 3 3.45–6.39 METs, and patient 4 3.9–4.43 METs. The 6-min walking distance improved in patient 1 540–570 m and patient 2 345–405 m. The CCS class, bodily pain, and general health domain scores improved in all patients.ConclusionESMR therapy might be beneficial for indicated patients with CABG-SAP to improve ischemic response, functional capacity, and physical component of quality of life.
Collapse
Affiliation(s)
- Mohammad Rizki Akbar
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
- *Correspondence: Mohammad Rizki Akbar
| | - Dwi Laksono Adiputro
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Ulin General Hospital, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Badai Bhatara Tiksnadi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| | - Erwin Affandi Soeriadi
- Department of Nuclear Medicine and Molecular Imaging, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| | - Melawati Hasan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| | - Fauzan Muttaqien
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Ulin General Hospital, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Pradana Pratomo Raharjo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| | - Eliza Nurazizah
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| | - Najmi Fauzan Tarsidin
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Dr. Hasan Sadikin General Hospital, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
7
|
Shock wave therapy in cardiology: A comment. Anatol J Cardiol 2020; 25:57-58. [PMID: 33382056 DOI: 10.14744/anatoljcardiol.2020.95071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Čelutkienė J, Burneikaitė G, Shkolnik E, Jakutis G, Vajauskas D, Čerlinskaitė K, Zuozienė G, Petrauskienė B, Puronaitė R, Komiagienė R, Butkuvienė I, Steponėnienė R, Misiūra J, Laucevičius A. The effect of cardiac shock wave therapy on myocardial function and perfusion in the randomized, triple-blind, sham-procedure controlled study. Cardiovasc Ultrasound 2019; 17:13. [PMID: 31272465 PMCID: PMC6610956 DOI: 10.1186/s12947-019-0163-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
Background Recent triple-blind sham procedure-controlled study revealed neutral effects of the cardiac shock wave therapy (CSWT) on exercise tolerance and symptoms in patients with stable angina. Current data about the effects of CSWT on global and regional myocardial contractility and perfusion is limited. Hereby we report the results of an imaging sub-study that evaluated the capacity of CSWT to ameliorate myocardial ischemia induced during dobutamine stress echocardiography (DSE) and cardiac single photon emission computed tomography (SPECT). Methods Prospective, randomized, triple-blind, sham procedure-controlled study enrolled 72 adult subjects who complied with defined inclusion criteria. The subjects were assigned to the OMT + CSWT and the OMT + sham procedure study groups with 1:1 ratio. Application of the CSWT covered all segments of the left ventricle. Imaging ischemia tests were performed in 59 study patients: DSE and SPECT before the CSWT treatment and after 6 months, with DSE carried out additionally at 3 months after randomization. Co-primary endpoints of the study were: change in wall motion score index (WMSI), representing the stress-induced impairment of regional myocardial function, and change in summed difference score (SDS), representing the amount of perfusion defect. Results OMT + CSWT and OMT + sham procedure study groups included 30 and 29 patients, respectively. Regional myocardial contractility during DSE significantly improved at 3 months follow-up in OMT + CSWT group compared to baseline as shown by WMSI at stress (1.4 ± 0.4 vs 1.6 ± 0.4, p = 0.001), but not in OMT + sham procedure group (1.5 ± 0.3 vs 1.6 ± 0.4, p = 0.136). The difference in stress DSE results between both study groups disappeared after 6 months. SPECT results demonstrated a significant reduction of inducible ischemia in OMT + CSWT group compared to OMT + sham procedure group at 6 months follow-up (SDS dropped from 5.4 ± 3.7 to 3.6 ± 3.8 vs 6.4 ± 5.9 to 6.2 ± 5 respectively, p = 0.034). Conclusions Cardiac shock wave treatment showed the ability to reduce stress-induced myocardial ischemia, as assessed by wall motion abnormalities and perfusion defects, compared to sham procedure. Trial registration Clinicaltrials.gov (NCT02339454). The trial was registered retrospectively on 12 January 2015.
Collapse
Affiliation(s)
- Jelena Čelutkienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania.
| | - Greta Burneikaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Evgeny Shkolnik
- Yale-New Haven Health Bridgeport Hospital, 267 Grant St, Bridgeport, 06610, CT, USA
| | - Gabrielius Jakutis
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Donatas Vajauskas
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Kamilė Čerlinskaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Gitana Zuozienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Birutė Petrauskienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Roma Puronaitė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Renata Komiagienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Irena Butkuvienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Rima Steponėnienė
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Jonas Misiūra
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| | - Aleksandras Laucevičius
- Institute of Clinical Medicine of the Faculty of Medicine of Vilnius University, Santariskiu St. 2, 08661, Vilnius, Lithuania
| |
Collapse
|