1
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
2
|
Diass K, Merzouki M, Elfazazi K, Azzouzi H, Challioui A, Azzaoui K, Hammouti B, Touzani R, Depeint F, Ayerdi Gotor A, Rhazi L. Essential Oil of Lavandula officinalis: Chemical Composition and Antibacterial Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1571. [PMID: 37050197 PMCID: PMC10097330 DOI: 10.3390/plants12071571] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The purpose of this study was to determine the chemical composition of the essential oil of Lavandula officinalis from Morocco using the GC-MS technique and assess the antibacterial effects against seven pathogenic bacteria strains isolated from the food origins of Salmonella infantis, Salmonella kentucky, Salmonella newport, three serotypes of Escherichia coli (O114H8K11, O127K88ac, O127H40K11) and Klebsiella. Tests of sensitivity were carried out on a solid surface using the Disc Diffusion Method. Results showed that E. coli and S.newport were sensitive to Lavandula officinalis essential oil. Minimum inhibitory concentrations (MIC) were determined using the method of agar dilution. The antibacterial results showed that four strains (three serotypes of E. coli, and S. newport) were remarkedly sensitive to Lavandula officinalis essential oil, giving MIC values of 88.7 µg/mL and 177.5 µg/mL. The molecular docking of the main oil products with the E. coli target protein 1VLY, showed that eucalyptol and linalyl acetate bind efficiently with the active site of the target protein. In particular, eucalyptol showed a higher activity than gentamicin used as positive control with a binding energy of -5.72 kcal/mol and -5.55 kcal/mol, respectively.
Collapse
Affiliation(s)
- Khaoula Diass
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (K.D.); (R.T.)
| | - Mohammed Merzouki
- Laboratoire de Chimie Appliquée et Environnement-Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco; (M.M.); (A.C.)
| | - Kaoutar Elfazazi
- Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (K.E.); (H.A.)
| | - Hanane Azzouzi
- Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (K.E.); (H.A.)
| | - Allal Challioui
- Laboratoire de Chimie Appliquée et Environnement-Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco; (M.M.); (A.C.)
| | - Khalil Azzaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, BP 1796, Fez 30050, Morocco;
| | - Belkheir Hammouti
- Laboratory of Industrial Engineering, Energy and The Environment (LI3E) SUPMTI, Rabat 10000, Morocco
| | - Rachid Touzani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (K.D.); (R.T.)
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| |
Collapse
|
3
|
Histopathological Evaluation of the Healing Process of Standardized Skin Burns in Rabbits: Assessment of a Natural Product with Honey and Essential Oils. J Clin Med 2022; 11:jcm11216417. [DOI: 10.3390/jcm11216417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Skin burns are one of the most difficult medical problems. Recently, studies have been directed towards development of natural products in order to identify effective and safe remedies. In the present study, we evaluated the efficacy of a natural composite (formulated from honey and essential oils) compared with MEBO® (0.25% β-sitosterol) and DERMAZIN® creams (1% silver-sulfadiazine) in the treatment of thermally induced skin burns. For this purpose, four burn-wounds were created on the back of male New Zealand rabbits (n = 10) using a thermal stamp under the effect of general anesthesia. Each wound represents one of the following groups: non-treated, natural composite-cream, MEBO®-cream, and silver-sulfadiazine treated groups, respectively. Treatments were applied once a day topically until one of these wounds appeared to be healed grossly. The non-treated group received no treatment. Grossly, skin burns have been healed after 28 days of the treatment in all groups except of the non-treated group. The healing efficacy of the natural composite, MEBO® and silver-sulfadiazine creams was quite similar macroscopically. However, microscopically, the epidermal layer of the composite-cream treated group was more mature than those of both MEBO® and silver-sulfadiazine creams treated groups. In conclusion, the tested composite may be a promising effective and inexpensive treatment of skin burns.
Collapse
|