1
|
Dinakaran D, Moore-Palhares D, Yang F, Hill JB. Precision radiotherapy with molecular-profiling of CNS tumours. J Neurooncol 2025; 172:51-75. [PMID: 39699761 DOI: 10.1007/s11060-024-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Diagnoses of CNS malignancies in the primary and metastatic setting have significantly advanced in the last decade with the advent of molecular pathology. Using a combination of immunohistochemistry, next-generation sequencing, and methylation profiling integrated with traditional histopathology, patient prognosis and disease characteristics can be understood to a much greater extent. This has recently manifested in predicting response to targeted drug therapies that are redefining management practices of CNS tumours. Radiotherapy, along with surgery, still remains an integral part of treating the majority of CNS tumours. However, the rapid advances in CNS molecular diagnostics have not yet been effectively translated into improving CNS radiotherapy. We explore several promising strategies under development to integrate molecular oncology into radiotherapy, and explore future directions that can serve to use molecular diagnostics to personalize radiotherapy. Evolving the management of CNS tumours with molecular profiling will be integral to supporting the future of precision radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
- Department of Medical Biophysics and Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
| | - Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Fan Yang
- Radiation Oncology, Mayo Clinic Arizona, 5881 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jordan B Hill
- Banner MD Anderson Cancer Center, 925 E. McDowell Rd, Phoenix, AZ, 85006, USA
| |
Collapse
|
2
|
Zhu Y, Cong S, Zhang Q, Huang Z, Yao X, Cheng Y, Liang D, Hu Z, Shao D. Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer with 18F-FDG PET/CT images. Biomed Phys Eng Express 2024; 10:065011. [PMID: 39214122 DOI: 10.1088/2057-1976/ad7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objective. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosis for patients with BMs. Therefore, early detection and treatment of BMs are highly important for improving patient prognosis. This study aimed to investigate the feasibility of a multimodal radiomics-based method using 3D neural networks trained on18F-FDG PET/CT images to predict BMs in NSCLC patients.Approach. We included 226 NSCLC patients who underwent18F-FDG PET/CT scans of areas, including the lung and brain, prior to EGFR-TKI therapy. Moreover, clinical data (age, sex, stage, etc) were collected and analyzed. Shallow lung features and deep lung-brain features were extracted using PyRadiomics and 3D neural networks, respectively. A support vector machine (SVM) was used to predict BMs. The receiver operating characteristic (ROC) curve and F1 score were used to assess BM prediction performance.Main result. The combination of shallow lung and shallow-deep lung-brain features demonstrated superior predictive performance (AUC = 0.96 ± 0.01). Shallow-deep lung-brain features exhibited strong significance (P < 0.001) and potential predictive performance (coefficient > 0.8). Moreover, BM prediction by age was significant (P < 0.05).Significance. Our approach enables the quantitative assessment of medical images and a deeper understanding of both superficial and deep tumor characteristics. This noninvasive method has the potential to identify BM-related features with statistical significance, thereby aiding in the development of targeted treatment plans for NSCLC patients.
Collapse
Affiliation(s)
- Yuan Zhu
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - Shan Cong
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - Qiyang Zhang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhenxing Huang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, People's Republic of China
| | - You Cheng
- The Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| | - Dong Liang
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhanli Hu
- Lauterbur Rese Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Dan Shao
- The Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Nowacka A, Fajkiel-Madajczyk A, Ohla J, Woźniak-Dąbrowska K, Liss S, Gryczka K, Smuczyński W, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. Current Treatment of Melanoma Brain Metastases. Cancers (Basel) 2023; 15:4088. [PMID: 37627116 PMCID: PMC10452790 DOI: 10.3390/cancers15164088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanoma is a type of skin cancer in which there is a strong correlation between its occurrence and exposure to ultraviolet radiation. Although it is not the most common skin cancer, it has the highest mortality rate of all skin cancers. The prognosis of patients is significantly worsened by melanoma metastasis to the brain, which often occurs in patients with advanced disease. The formation and development of melanoma metastases to the brain involve a very complex process, and their mechanisms are not fully understood. One of the ways for metastatic melanoma cells to survive and develop cancer in the brain environment is the presence of oncogenic BRAF mutation, which occurs in up to 50% of metastatic melanoma cases. Before discovering new methods of treating metastases, the overall survival of patients with this disease was 6 months. Currently, research is being conducted on new drugs using immunotherapy (immune checkpoint inhibitors: anti-PD-1, anti-CTLA-4) and targeted therapy (BRAF and MEK inhibitors) to improve the prognosis of patients. In this article, we summarize the current state of knowledge about the results of treating brain metastases with new systemic therapies.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Jakub Ohla
- Department of Orthopaedics and Traumatology, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Kamila Woźniak-Dąbrowska
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Sara Liss
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland;
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland;
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (K.W.-D.); (S.L.); (M.Ś.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-090 Bydgoszcz, Poland; (A.F.-M.); (K.G.); (M.W.)
| |
Collapse
|