1
|
Abstract
In the past 25 years, incidence rates of breast cancer have risen about 30% in westernized countries. Mutations in BRCA1 and BRCA2 are the most prominent cause of breast cancer. However, these cancer susceptibility genes (BRCAs) only account for a few percent of women suffering breast tumor. With our understanding that BRCAs are Fanconi Anemia (FA) genes, investigations into the FA signaling network should provide a previously unrecognized key to unlock in-depth insights into both etiology and treatment of breast cancer. Here, we discuss utilization of the FA signaling as a unique genetic model system to expand our knowledge about the molecular biology of breast cancer and potential applications of the gained knowledge to enable preventive and therapeutic approaches for breast cancer patient care.
Collapse
Affiliation(s)
- Chi Ma
- a University of Hawaii Cancer Center
| | - Manoj Nepal
- a University of Hawaii Cancer Center.,b Graduate Program of Molecular Biosciences and Bioengineering , University of Hawaii , Honolulu , Hawaii , USA
| | | | - Ping Fan
- a University of Hawaii Cancer Center
| | - Peiwen Fei
- a University of Hawaii Cancer Center.,b Graduate Program of Molecular Biosciences and Bioengineering , University of Hawaii , Honolulu , Hawaii , USA
| |
Collapse
|
2
|
Che R, Zhang J, Nepal M, Han B, Fei P. Multifaceted Fanconi Anemia Signaling. Trends Genet 2018; 34:171-183. [PMID: 29254745 PMCID: PMC5858900 DOI: 10.1016/j.tig.2017.11.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
Abstract
In 1927 Guido Fanconi described a hereditary condition presenting panmyelopathy accompanied by short stature and hyperpigmentation, now better known as Fanconi anemia (FA). With this discovery the genetic and molecular basis underlying FA has emerged as a field of great interest. FA signaling is crucial in the DNA damage response (DDR) to mediate the repair of damaged DNA. This has attracted a diverse range of investigators, especially those interested in aging and cancer. However, recent evidence suggests FA signaling also regulates functions outside the DDR, with implications for many other frontiers of research. We discuss here the characteristics of FA functions and expand upon current perspectives regarding the genetics of FA, indicating that FA plays a role in a myriad of molecular and cellular processes.
Collapse
Affiliation(s)
- Raymond Che
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Bing Han
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
3
|
Overlooked FANCD2 variant encodes a promising, portent tumor suppressor, and alternative polyadenylation contributes to its expression. Oncotarget 2017; 8:22490-22500. [PMID: 28157704 PMCID: PMC5410239 DOI: 10.18632/oncotarget.14989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
Fanconi Anemia (FA) complementation group D2 protein (FANCD2) is the center of the FA tumor suppressor pathway, which has become an important field of investigation in human aging and cancer. Here we report an overlooked central player in the FA pathway, FANCD2 variant 2 (FANCD2-V2), which appears to perform more potent tumor suppressor-function compared to the known variant of FANCD2, namely, FANCD2-V1. Detailed analysis of the FANCD2 gene structure indicated a proximal and distal polyadenylation site (PAS), associated with V2 and V1 transcripts accordingly. RNA polymerase II Chromatin immunoprecipitation (ChIP) targeting the two PAS-regions determined lesser binding of RNA pol II to DNA fragments in the distal PAS region in non-malignant cells compared to malignant cells. Conversely, the opposite occurred in the proximal PAS region. Moreover, RNA immunoprecipitation (RIP) identified that U2 snRNP, a major component of RNA splicing complex that interacts with the 3′end of an intron, showed greater binding to the last intron of the FANCD2-V1 transcript in malignant cells compared to the non-malignant cells. Importantly, our data showed that in human tissue samples, the ratio of V2 /V1 expression in lung, bladder, or ovarian cancer correlates inversely with the tumor stages/grades. Therefore, these findings provide a previously unrecognized central player FANCD2-V2 and thus novel insights into human tumorigenesis, and indicate that V2/V1 can act as an effective biomarker in assisting the recognition of tumor malignance.
Collapse
|
4
|
Involvement of FANCD2 in Energy Metabolism via ATP5α. Sci Rep 2017; 7:4921. [PMID: 28687786 PMCID: PMC5501830 DOI: 10.1038/s41598-017-05150-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Growing evidence supports a general hypothesis that aging and cancer are diseases related to energy metabolism. However, the involvement of Fanconi Anemia (FA) signaling, a unique genetic model system for studying human aging or cancer, in energy metabolism remains elusive. Here, we report that FA complementation group D2 protein (FANCD2) functionally impacts mitochondrial ATP production through its interaction with ATP5α, whereas this relationship was not observed in the mutant FANCD2 (K561R)-carrying cells. Moreover, while ATP5α is present within the mitochondria in wild-type cells, it is instead located mostly outside in cells that carry the non-monoubiquitinated FANCD2. In addition, mitochondrial ATP production is significantly reduced in these cells, compared to those cells carrying wtFANCD2. We identified one region (AA42-72) of ATP5α, contributing to the interaction between ATP5α and FANCD2, which was confirmed by protein docking analysis. Further, we demonstrated that mtATP5α (∆AA42-72) showed an aberrant localization, and resulted in a decreased ATP production, similar to what was observed in non-monoubiquitinated FANCD2-carrying cells. Collectively, our study demonstrates a novel role of FANCD2 in governing cellular ATP production, and advances our understanding of how defective FA signaling contributes to aging and cancer at the energy metabolism level.
Collapse
|
5
|
Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP, McElroy AN, Kim CJ, Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci 2017; 18:ijms18061269. [PMID: 28613254 PMCID: PMC5486091 DOI: 10.3390/ijms18061269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase). FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
Collapse
Affiliation(s)
- Karolina Skvarova Kramarzova
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Childhood Leukemia Investigation Prague (CLIP), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague 15006, Czech Republic.
| | - Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beau R Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anthony P DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Amber N McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation, Seoul 138-736, Korea.
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Panneerselvam J, Shen Y, Che R, Fei P. Fanconi Anemia Group D2 Protein Participates in Replication Origin Firing. Chemotherapy 2016; 5. [PMID: 27738567 DOI: 10.4172/2167-7700.1000206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- J Panneerselvam
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawai'i 96813, USA
| | - Y Shen
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawai'i 96813, USA
| | - R Che
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawai'i 96813, USA; Graduate Program of Molecular Biosciences and Bio-engineering, University of Hawaii, HI, USA
| | - P Fei
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawai'i 96813, USA; Graduate Program of Molecular Biosciences and Bio-engineering, University of Hawaii, HI, USA
| |
Collapse
|