1
|
Havaei SM, Aucoin MG, Jahanian-Najafabadi A. Pseudomonas Exotoxin-Based Immunotoxins: Over Three Decades of Efforts on Targeting Cancer Cells With the Toxin. Front Oncol 2021; 11:781800. [PMID: 34976821 PMCID: PMC8716853 DOI: 10.3389/fonc.2021.781800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the prominent causes of death worldwide. Despite the existence of various modalities for cancer treatment, many types of cancer remain uncured or develop resistance to therapeutic strategies. Furthermore, almost all chemotherapeutics cause a range of side effects because they affect normal cells in addition to malignant cells. Therefore, the development of novel therapeutic agents that are targeted specifically toward cancer cells is indispensable. Immunotoxins (ITs) are a class of tumor cell-targeted fusion proteins consisting of both a targeting moiety and a toxic moiety. The targeting moiety is usually an antibody/antibody fragment or a ligand of the immune system that can bind an antigen or receptor that is only expressed or overexpressed by cancer cells but not normal cells. The toxic moiety is usually a protein toxin (or derivative) of animal, plant, insect, or bacterial origin. To date, three ITs have gained Food and Drug Administration (FDA) approval for human use, including denileukin diftitox (FDA approval: 1999), tagraxofusp (FDA approval: 2018), and moxetumomab pasudotox (FDA approval: 2018). All of these ITs take advantage of bacterial protein toxins. The toxic moiety of the first two ITs is a truncated form of diphtheria toxin, and the third is a derivative of Pseudomonas exotoxin (PE). There is a growing list of ITs using PE, or its derivatives, being evaluated preclinically or clinically. Here, we will review these ITs to highlight the advances in PE-based anticancer strategies, as well as review the targeting moieties that are used to reduce the non-specific destruction of non-cancerous cells. Although we tried to be as comprehensive as possible, we have limited our review to those ITs that have proceeded to clinical trials and are still under active clinical evaluation.
Collapse
Affiliation(s)
- Seyed Mehdi Havaei
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G. Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Vázquez Cervantes GI, González Esquivel DF, Gómez-Manzo S, Pineda B, Pérez de la Cruz V. New Immunotherapeutic Approaches for Glioblastoma. J Immunol Res 2021; 2021:3412906. [PMID: 34557553 PMCID: PMC8455182 DOI: 10.1155/2021/3412906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12-18 months despite these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510 Distrito Federal, Mexico
| | - Dinora F. González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
3
|
Determinants of Intraparenchymal Infusion Distributions: Modeling and Analyses of Human Glioblastoma Trials. Pharmaceutics 2020; 12:pharmaceutics12090895. [PMID: 32967184 PMCID: PMC7559135 DOI: 10.3390/pharmaceutics12090895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023] Open
Abstract
Intra-parenchymal injection and delivery of therapeutic agents have been used in clinical trials for brain cancer and other neurodegenerative diseases. The complexity of transport pathways in tissue makes it difficult to envision therapeutic agent distribution from clinical MR images. Computer-assisted planning has been proposed to mitigate risk for inadequate delivery through quantitative understanding of infusion characteristics. We present results from human studies and simulations of intratumoral infusions of immunotoxins in glioblastoma patients. Gd-DTPA and 124I-labeled human serum albumin (124I-HSA) were co-infused with the therapeutic, and their distributions measured in MRI and PET. Simulations were created by modeling tissue fluid mechanics and physiology and suggested that reduced distribution of tracer molecules within tumor is primarily related to elevated loss rates computed from DCE. PET-tracer on the other hand shows that the larger albumin molecule had longer but heterogeneous residence times within the tumor. We found over two orders of magnitude variation in distribution volumes for the same infusion volumes, with relative error ~20%, allowing understanding of even anomalous infusions. Modeling and measurement revealed that key determinants of flow include infusion-induced expansion and loss through compromised BBB. Opportunities are described to improve computer-assisted CED through iterative feedback between simulations and imaging.
Collapse
|
4
|
Targeting Receptors on Cancer Cells with Protein Toxins. Biomolecules 2020; 10:biom10091331. [PMID: 32957689 PMCID: PMC7563326 DOI: 10.3390/biom10091331] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells frequently upregulate surface receptors that promote growth and survival. These receptors constitute valid targets for intervention. One strategy involves the delivery of toxic payloads with the goal of killing those cancer cells with high receptor levels. Delivery can be accomplished by attaching a toxic payload to either a receptor-binding antibody or a receptor-binding ligand. Generally, the cell-binding domain of the toxin is replaced with a ligand or antibody that dictates a new binding specificity. The advantage of this “immunotoxin” approach lies in the potency of these chimeric molecules for killing cancer cells. However, receptor expression on normal tissue represents a significant obstacle to therapeutic intervention.
Collapse
|
5
|
Loya J, Zhang C, Cox E, Achrol AS, Kesari S. Biological intratumoral therapy for the high-grade glioma part I: intratumoral delivery and immunotoxins. CNS Oncol 2019; 8:CNS38. [PMID: 31747788 PMCID: PMC6880302 DOI: 10.2217/cns-2019-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Management of high-grade gliomas remains a complex challenge. Standard of care consists of microsurgical resection, chemotherapy and radiation, but despite these aggressive multimodality therapies the overall prognosis remains poor. A major focus of ongoing translational research studies is to develop novel therapeutic strategies that can maximize tumor cell eradication while minimizing collateral side effects. Particularly, biological intratumoral therapies have been the focus of new translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two-part review will provide an overview of biological intratumoral therapies and summarize key advances and remaining challenges in intratumoral biological therapies for high-grade glioma. Part I focuses on discussion of the concepts of intratumoral delivery and immunotoxin therapies.
Collapse
Affiliation(s)
- Joshua Loya
- Wayne State University School of Medicine, Department of Neurosurgery, 42 W Warren Ave, Detroit, MI 48202, USA
| | - Charlie Zhang
- State University of New York at Buffalo School of Medicine, 1010 Main St, Buffalo, NY 14202, USA
| | - Emily Cox
- Providence Medical Research Center, 105 W 8th Ave #6050w, Spokane, WA 99204, USA
| | - Achal S Achrol
- John Wayne Cancer Institute & Pacific Neuroscience Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute & Pacific Neuroscience Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| |
Collapse
|
6
|
Eskilsson E, Røsland GV, Solecki G, Wang Q, Harter PN, Graziani G, Verhaak RGW, Winkler F, Bjerkvig R, Miletic H. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol 2019; 20:743-752. [PMID: 29040782 DOI: 10.1093/neuonc/nox191] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with glioblastoma (GBM) have a universally poor prognosis and are in urgent need of effective treatment strategies. Recent advances in sequencing techniques unraveled the complete genomic landscape of GBMs and revealed profound heterogeneity of individual tumors even at the single cell level. Genomic profiling has detected epidermal growth factor receptor (EGFR) gene alterations in more than half of GBMs. Major genetic events include amplification and mutation of EGFR. Yet, treatment strategies targeting EGFR have thus far failed in clinical trials. In this review, we discuss the clonal and functional heterogeneity of EGFRs in GBM development and critically reassess the potential of EGFRs as therapeutic targets.
Collapse
Affiliation(s)
- Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Norway
| | - Gergely Solecki
- Department of Neurooncology, University Hospital Heidelberg, Germany
| | - Qianghu Wang
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Patrick N Harter
- Edinger-Institute, Goethe-University Medical School, Frankfurt am Main, Germany
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roel G W Verhaak
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Frank Winkler
- Department of Neurooncology, University Hospital Heidelberg, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Center, University of Bergen, Norway.,Norlux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Center, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
8
|
Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Front Oncol 2018; 8:624. [PMID: 30619758 PMCID: PMC6304427 DOI: 10.3389/fonc.2018.00624] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma, the most common, aggressive brain tumor, ranks among the least curable cancers-owing to its strong tendency for intracranial dissemination, high proliferation potential, and inherent tumor resistance to radiation and chemotherapy. Current glioblastoma treatment strategies are further hampered by a critical challenge: adverse, non-specific treatment effects in normal tissue combined with the inability of drugs to penetrate the blood brain barrier and reach the tumor microenvironment. Thus, the creation of effective therapies for glioblastoma requires development of targeted drug-delivery systems that increase accumulation of the drug in the tumor tissue while minimizing systemic toxicity in healthy tissues. As demonstrated in various preclinical glioblastoma models, macromolecular drug carriers have the potential to improve delivery of small molecule drugs, therapeutic peptides, proteins, and genes to brain tumors. Currently used macromolecular drug delivery systems, such as liposomes and polymers, passively target solid tumors, including glioblastoma, by capitalizing on abnormalities of the tumor vasculature, its lack of lymphatic drainage, and the enhanced permeation and retention (EPR) effect. In addition to passive targeting, active targeting approaches include the incorporation of various ligands on the surface of macromolecules that bind to cell surface receptors expressed on specific cancer cells. Active targeting approaches also utilize stimulus responsive macromolecules which further improve tumor accumulation by triggering changes in the physical properties of the macromolecular carrier. The stimulus can be an intrinsic property of the tumor tissue, such as low pH, or extrinsic, such as local application of ultrasound or heat. This review article explores current preclinical studies and future perspectives of targeted drug delivery to glioblastoma by macromolecular carrier systems, including polymeric micelles, nanoparticles, and biopolymers. We highlight key aspects of the design of diverse macromolecular drug delivery systems through a review of their preclinical applications in various glioblastoma animal models. We also review the principles and advantages of passive and active targeting based on various macromolecular carriers. Additionally, we discuss the potential disadvantages that may prevent clinical application of these carriers in targeting glioblastoma, as well as approaches to overcoming these obstacles.
Collapse
Affiliation(s)
- Drazen Raucher
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Sonja Dragojevic
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| | - Jungsu Ryu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center Jackson, MS, United States
| |
Collapse
|
9
|
Sym004-induced EGFR elimination is associated with profound anti-tumor activity in EGFRvIII patient-derived glioblastoma models. J Neurooncol 2018; 138:489-498. [PMID: 29564747 PMCID: PMC5999169 DOI: 10.1007/s11060-018-2832-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sym004 is a mixture of two monoclonal antibodies (mAbs), futuximab and modotuximab, targeting non-overlapping epitopes on the epidermal growth factor receptor (EGFR). Previous studies have shown that Sym004 is more efficient at inducing internalization and degradation of EGFR than individual components, which translates into superior cancer cell inhibition. We investigated whether Sym004 induces removal of EGFRvIII and if this removal translates into tumor growth inhibition in hard-to-treat glioblastomas (GBMs) harboring the mutated, constitutively active EGFR variant III (EGFRvIII). METHODS To address this question, we tested the effect of Sym004 versus cetuximab in eight patient-derived GBM xenograft models expressing either wild-type EGFR (EGFRwt) and/or mutant EGFRvIII. All models were tested as both subcutaneous and orthotopic intracranial xenograft models. RESULTS In vitro studies demonstrated that Sym004 internalized and removed EGFRvIII more efficiently than mAbs, futuximab, modotuximab, and cetuximab. Removal of EGFRvIII by Sym004 translated into significant in vivo anti-tumor activity in all six EGFRvIII xenograft models. Furthermore, the anti-tumor activity of Sym004 in vivo was superior to that of its individual components, futuximab and modotuximab, suggesting a clear synergistic effect of the mAbs in the mixture. CONCLUSION These results demonstrate the broad activity of Sym004 in patient-derived EGFRvIII-expressing GBM xenograft models and provide a clear rationale for clinical evaluation of Sym004 in EGFRvIII-positive adult GBM patients.
Collapse
|
10
|
Razpotnik R, Novak N, Čurin Šerbec V, Rajcevic U. Targeting Malignant Brain Tumors with Antibodies. Front Immunol 2017; 8:1181. [PMID: 28993773 PMCID: PMC5622144 DOI: 10.3389/fimmu.2017.01181] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the antibody to bind to the specific target(s). Finally, the current clinical trials are reviewed, showing the most recent progress of attractive approaches to deliver therapeutic antibodies across the BBB aiming at the specific antigen.
Collapse
Affiliation(s)
- Rok Razpotnik
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Neža Novak
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Uros Rajcevic
- Department of Research and Development, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
11
|
Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII Dual-Targeting Peptide-Mediated Drug Delivery for Enhanced Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24462-24475. [PMID: 28685576 DOI: 10.1021/acsami.7b05617] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor-homing peptides have been widely used to mediate active targeted drug delivery. l-AE is a reported targeting peptide demonstrating high binding affinity to epidermal growth factor receptor (EGFR) and mutation variant III (EGFRvIII) overexpressed on neovasculature, vasculogenic mimicry, tumor cells, and tumor stem cells. To improve its proteolytic stability, a d-peptide ligand (termed d-AE, the enantiomer of l-AE) was developed. d-AE was confirmed to bind receptors EGFR and EGFRvIII with targeting capability comparable to l-AE. In vivo biodistribution demonstrated the superiority of d-AE in prolonged circulation and enhanced intratumoral accumulation. Furthermore, stabilized peptide modification endowed micelles higher transcytosis efficiency and penetrating capability on blood-brain tumor barrier/U87 tumor spheroids coculture model. When paclitaxel (PTX) was loaded, d-AE-micelle/PTX demonstrated excellent antitumor effect in comparison to Taxol, micelle/PTX, and l-AE-micelle/PTX. These findings indicated that the multitargeted drug delivery system enabled by d-AE ligand provides a promising way for glioma therapy.
Collapse
Affiliation(s)
- Jiani Mao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Qing Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200030, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, (Fudan University), Ministry of Education, Shanghai 201203, China
- Minhang Hospital, Fudan University , Shanghai 201199, China
- State Key Laboratory of Medical Neurobiology, The Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
- Institute of Integrative Medicine of Fudan University , Shanghai 200040, China
| |
Collapse
|