1
|
Kuo G, Kumbhar R, Blair W, Dawson VL, Dawson TM, Mao X. Emerging targets of α-synuclein spreading in α-synucleinopathies: a review of mechanistic pathways and interventions. Mol Neurodegener 2025; 20:10. [PMID: 39849529 PMCID: PMC11756073 DOI: 10.1186/s13024-025-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
α-Synucleinopathies constitute a spectrum of neurodegenerative disorders, including Parkinson's disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), and Alzheimer's disease concurrent with LBD (AD-LBD). These disorders are unified by a pathological hallmark: aberrant misfolding and accumulation of α-synuclein (α-syn). This review delves into the pivotal role of α-syn, the key agent in α-synucleinopathy pathophysiology, and provides a survey of potential therapeutics that target cell-to-cell spread of pathologic α-syn. Recognizing the intricate complexity and multifactorial etiology of α-synucleinopathy, the review illuminates the potential of various membrane receptors, proteins, intercellular spreading pathways, and pathological agents for therapeutic interventions. While significant progress has been made in understanding α-synucleinopathy, the pursuit of efficacious treatments remains challenging. Several strategies involving decreasing α-syn production and aggregation, increasing α-syn degradation, lowering extracellular α-syn, and inhibiting cellular uptake of α-syn are presented. The paper underscores the necessity of meticulous and comprehensive investigations to advance our knowledge of α-synucleinopathy pathology and ultimately develop innovative therapeutic strategies for α-synucleinopathies.
Collapse
Affiliation(s)
- Grace Kuo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ramhari Kumbhar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William Blair
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, 70130-2685, USA.
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Tong Y, Zhang P, Yang X, Liu X, Zhang J, Grudniewska M, Jung I, Abegg D, Liu J, Childs-Disney JL, Gibaut QMR, Haniff HS, Adibekian A, Mouradian MM, Disney MD. Decreasing the intrinsically disordered protein α-synuclein levels by targeting its structured mRNA with a ribonuclease-targeting chimera. Proc Natl Acad Sci U S A 2024; 121:e2306682120. [PMID: 38181056 PMCID: PMC10786272 DOI: 10.1073/pnas.2306682120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
α-Synuclein is an important drug target for the treatment of Parkinson's disease (PD), but it is an intrinsically disordered protein lacking typical small-molecule binding pockets. In contrast, the encoding SNCA mRNA has regions of ordered structure in its 5' untranslated region (UTR). Here, we present an integrated approach to identify small molecules that bind this structured region and inhibit α-synuclein translation. A drug-like, RNA-focused compound collection was studied for binding to the 5' UTR of SNCA mRNA, affording Synucleozid-2.0, a drug-like small molecule that decreases α-synuclein levels by inhibiting ribosomes from assembling onto SNCA mRNA. This RNA-binding small molecule was converted into a ribonuclease-targeting chimera (RiboTAC) to degrade cellular SNCA mRNA. RNA-seq and proteomics studies demonstrated that the RiboTAC (Syn-RiboTAC) selectively degraded SNCA mRNA to reduce its protein levels, affording a fivefold enhancement of cytoprotective effects as compared to Synucleozid-2.0. As observed in many diseases, transcriptome-wide changes in RNA expression are observed in PD. Syn-RiboTAC also rescued the expression of ~50% of genes that were abnormally expressed in dopaminergic neurons differentiated from PD patient-derived iPSCs. These studies demonstrate that the druggability of the proteome can be expanded greatly by targeting the encoding mRNAs with both small molecule binders and RiboTAC degraders.
Collapse
Affiliation(s)
- Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Peiyuan Zhang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Xueyi Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Xiaohui Liu
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Jie Zhang
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Magda Grudniewska
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Ikrak Jung
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | - Jun Liu
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Quentin M. R. Gibaut
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| | - Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
| | | | - M. Maral Mouradian
- Rutgers Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Piscataway, NJ08854
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ08854
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL33458
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458
| |
Collapse
|
3
|
Brunet de Courssou JB, Durr A, Adams D, Corvol JC, Mariani LL. Antisense therapies in neurological diseases. Brain 2021; 145:816-831. [PMID: 35286370 DOI: 10.1093/brain/awab423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Advances in targeted regulation of gene expression allowed new therapeutic approaches for monogenic neurological diseases. Molecular diagnosis has paved the way to personalized medicine targeting the pathogenic roots: DNA or its RNA transcript. These antisense therapies rely on modified nucleotides sequences (single-strand DNA or RNA, both belonging to the antisense oligonucleotides family, or double-strand interfering RNA) to act specifically on pathogenic target nucleic acids, thanks to complementary base pairing. Depending on the type of molecule, chemical modifications and target, base pairing will lead alternatively to splicing modifications of primary transcript RNA or transient messenger RNA degradation or non-translation. The key to success for neurodegenerative diseases also depends on the ability to reach target cells. The most advanced antisense therapies under development in neurological disorders are presented here, at the clinical stage of development, either at phase 3 or market authorization stage, such as in spinal amyotrophy, Duchenne muscular dystrophy, transthyretin-related hereditary amyloidosis, porphyria and amyotrophic lateral sclerosis; or in earlier clinical phase 1 B, for Huntington disease, synucleinopathies and tauopathies. We also discuss antisense therapies at the preclinical stage, such as in some tauopathies, spinocerebellar ataxias or other rare neurological disorders. Each subtype of antisense therapy, antisense oligonucleotides or interfering RNA, has proved target engagement or even clinical efficacy in patients; undisputable recent advances for severe and previously untreatable neurological disorders. Antisense therapies show great promise, but many unknowns remain. Expanding the initial successes achieved in orphan or rare diseases to other disorders will be the next challenge, as shown by the recent failure in Huntington disease or due to long-term preclinical toxicity in multiple system atrophy and cystic fibrosis. This will be critical in the perspective of new planned applications to premanifest mutation carriers, or other non-genetic degenerative disorders such as multiple system atrophy or Parkinson disease.
Collapse
Affiliation(s)
- Jean-Baptiste Brunet de Courssou
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Alexandra Durr
- Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - David Adams
- Department of Neurology, Bicêtre hospital, Assistance Publique Hôpitaux de Paris, Centre de Référence National des Neuropathies Périphériques Rares, Paris Saclay University, INSERM U 1195, Le Kremlin Bicêtre, France
| | - Jean-Christophe Corvol
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Louise-Laure Mariani
- Assistance Publique Hôpitaux de Paris, Department of Neurology, CIC Neurosciences, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,Sorbonne University, Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| |
Collapse
|
4
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
5
|
Meyer SM, Williams CC, Akahori Y, Tanaka T, Aikawa H, Tong Y, Childs-Disney JL, Disney MD. Small molecule recognition of disease-relevant RNA structures. Chem Soc Rev 2020; 49:7167-7199. [PMID: 32975549 PMCID: PMC7717589 DOI: 10.1039/d0cs00560f] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeting RNAs with small molecules represents a new frontier in drug discovery and development. The rich structural diversity of folded RNAs offers a nearly unlimited reservoir of targets for small molecules to bind, similar to small molecule occupancy of protein binding pockets, thus creating the potential to modulate human biology. Although the bacterial ribosome has historically been the most well exploited RNA target, advances in RNA sequencing technologies and a growing understanding of RNA structure have led to an explosion of interest in the direct targeting of human pathological RNAs. This review highlights recent advances in this area, with a focus on the design of small molecule probes that selectively engage structures within disease-causing RNAs, with micromolar to nanomolar affinity. Additionally, we explore emerging RNA-target strategies, such as bleomycin A5 conjugates and ribonuclease targeting chimeras (RIBOTACs), that allow for the targeted degradation of RNAs with impressive potency and selectivity. The compounds discussed in this review have proven efficacious in human cell lines, patient-derived cells, and pre-clinical animal models, with one compound currently undergoing a Phase II clinical trial and another that recently garnerd FDA-approval, indicating a bright future for targeted small molecule therapeutics that affect RNA function.
Collapse
Affiliation(s)
- Samantha M Meyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Christopher C Williams
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Toru Tanaka
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Haruo Aikawa
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Yuquan Tong
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
6
|
Translation of the intrinsically disordered protein α-synuclein is inhibited by a small molecule targeting its structured mRNA. Proc Natl Acad Sci U S A 2020; 117:1457-1467. [PMID: 31900363 PMCID: PMC6983430 DOI: 10.1073/pnas.1905057117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many proteins are refractory to targeting because they lack small-molecule binding pockets. An alternative to drugging these proteins directly is to target the messenger (m)RNA that encodes them, thereby reducing protein levels. We describe such an approach for the difficult-to-target protein α-synuclein encoded by the SNCA gene. Multiplication of the SNCA gene locus causes dominantly inherited Parkinson's disease (PD), and α-synuclein protein aggregates in Lewy bodies and Lewy neurites in sporadic PD. Thus, reducing the expression of α-synuclein protein is expected to have therapeutic value. Fortuitously, the SNCA mRNA has a structured iron-responsive element (IRE) in its 5' untranslated region (5' UTR) that controls its translation. Using sequence-based design, we discovered small molecules that target the IRE structure and inhibit SNCA translation in cells, the most potent of which is named Synucleozid. Both in vitro and cellular profiling studies showed Synucleozid directly targets the α-synuclein mRNA 5' UTR at the designed site. Mechanistic studies revealed that Synucleozid reduces α-synuclein protein levels by decreasing the amount of SNCA mRNA loaded into polysomes, mechanistically providing a cytoprotective effect in cells. Proteome- and transcriptome-wide studies showed that the compound's selectivity makes Synucleozid suitable for further development. Importantly, transcriptome-wide analysis of mRNAs that encode intrinsically disordered proteins revealed that each has structured regions that could be targeted with small molecules. These findings demonstrate the potential for targeting undruggable proteins at the level of their coding mRNAs. This approach, as applied to SNCA, is a promising disease-modifying therapeutic strategy for PD and other α-synucleinopathies.
Collapse
|
7
|
Dysregulation of the causative genes for hereditary parkinsonism in the midbrain in Parkinson's disease. Mov Disord 2017; 32:1211-1220. [DOI: 10.1002/mds.27019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/26/2017] [Accepted: 03/17/2017] [Indexed: 11/07/2022] Open
|
8
|
Javed H, Menon SA, Al-Mansoori KM, Al-Wandi A, Majbour NK, Ardah MT, Varghese S, Vaikath NN, Haque ME, Azzouz M, El-Agnaf OM. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders. Mol Ther 2016; 24:746-758. [PMID: 26700614 PMCID: PMC4886934 DOI: 10.1038/mt.2015.232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and postural instability, for which there is no effective treatment available till date. Here, we report the development of nonviral vectors specific for neuronal cells that can deliver short interfering RNA (siRNA) against the α-synuclein gene (SNCA), and prevent PD-like symptoms both in vitro and in vivo. These vectors not only help siRNA duplexes cross the blood-brain barrier in mice, but also stabilize these siRNAs leading to a sustainable 60-90% knockdown of α-synuclein protein. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rapidly develop PD-like symptoms which were significantly alleviated when SNCA was knocked down using our vectors. Together, our data not only confirm the central role of α-synuclein in the onset of PD, but also provide a proof of principle that these nonviral vectors can be used as novel tools to design effective strategies to combat central nervous system diseases.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sindhu A Menon
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Karima M Al-Mansoori
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelmojib Al-Wandi
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nour K Majbour
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiji Varghese
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nishant N Vaikath
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mimoun Azzouz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Omar Ma El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, P.O. Box 5825 Doha, Qatar.
| |
Collapse
|
9
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|