1
|
Sarva H, Rodriguez-Porcel F, Rivera F, Gonzalez CD, Barkan S, Tripathi S, Gatto E, Ruiz PG. The role of genetics in the treatment of dystonia with deep brain stimulation: Systematic review and Meta-analysis. J Neurol Sci 2024; 459:122970. [PMID: 38520940 DOI: 10.1016/j.jns.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.
Collapse
Affiliation(s)
- Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA.
| | | | - Francisco Rivera
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Claudio Daniel Gonzalez
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Samantha Barkan
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Susmit Tripathi
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos Aires, INEBA, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pedro Garcia Ruiz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Percetti M, Zini M, Soliveri P, Cogiamanian F, Ferrara M, Orunesu E, Ranghetti A, Ferrarese C, Pezzoli G, Garavaglia B, Isaias IU, Sacilotto G. The Clinical Spectrum of ANO3-Report of a New Family and Literature Review. Mov Disord Clin Pract 2024; 11:289-297. [PMID: 38284143 PMCID: PMC10928356 DOI: 10.1002/mdc3.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Mutations in ANO3 are a rare cause of autosomal dominant isolated or combined dystonia, mainly presenting in adulthood. CASES We extensively characterize a new, large ANO3 family with six affected carriers. The proband is a young girl who had suffered from tremor and painful dystonic movements in her right arm since the age of 11 years. She later developed a diffuse dystonic tremor and mild extrapyramidal signs (ie, rigidity and hypodiadochokinesis) in her right arm. She also suffered from psychomotor delay and learning difficulties. Repeated structural and functional neuroimaging were unremarkable. A dystonic tremor was also present in her two sisters. Her paternal aunt, father, and a third older sister presented episodic postural tremor in the arms. The father and one sister also presented learning difficulties. The heterozygous p.G6V variant in ANO3 was identified in all affected subjects. LITERATURE REVIEW Stratification by age at onset divided ANO3 cases into two major groups, where younger patients displayed a more severe phenotype, probably due to variants near the scrambling domain. CONCLUSIONS We describe the phenotype of a new ANO3 family and highlight the need for functional studies to explore the impact of ANO3 variants on its phospholipid scrambling activity.
Collapse
Affiliation(s)
- Marco Percetti
- Parkinson Institute, ASST G. Pini‐CTOMilanItaly
- School of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milan‐BicoccaMilanItaly
- Foundation IRCCS San Gerardo dei TintoriMonzaItaly
| | | | | | - Filippo Cogiamanian
- Neurophysiopathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Eva Orunesu
- Nuclear Medicine DepartmentFoundation IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | | | - Carlo Ferrarese
- School of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milan‐BicoccaMilanItaly
- Foundation IRCCS San Gerardo dei TintoriMonzaItaly
| | - Gianni Pezzoli
- Parkinson Institute, ASST G. Pini‐CTOMilanItaly
- Fondazione Grigioni per il Morbo di ParkinsonMilanItaly
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, National Neurological Institute Carlo BestaMilanItaly
| | - Ioannis Ugo Isaias
- Parkinson Institute, ASST G. Pini‐CTOMilanItaly
- University Hospital of WürzburgWürzburgGermany
| | | |
Collapse
|
3
|
Esposito M, Trinchillo A, Piceci-Sparascio F, D'Asdia MC, Consoli F, De Luca A. A novel ANO3 variant in two siblings with different phenotypes. Parkinsonism Relat Disord 2023; 111:105413. [PMID: 37116293 DOI: 10.1016/j.parkreldis.2023.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Dystonia type 24 is due to the mutation of the ANO3 gene. It generally consists of craniocervical dystonia associated with tremor; however, other neurological manifestations may also occur. Scientific literature has been expanding on its phenotype over the past few years. CASE Here we present two siblings affected by dystonia 24 associated to a novel missense mutation of the ANO3 gene. Description of their phenotype, with regard to motor and non-motor features, may improve the knowledge on DYT 24. Consistent with previous reports, our patients presented with cranio-cervical involvement, and they also exhibited different severity and phenotypes. However non-motor symptoms were present too. CONCLUSION Dystonia 24 spectrum is continuously expanding. This case suggests that the ANO3 missense mutation should be sought in all cases of dystonia and isolated tremor and that non-motor symptoms are an integral part of dystonic syndromes. It also shows that clinical and treatment features may vary from patient to patient, even if they may present the same mutation.
Collapse
Affiliation(s)
| | - Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - Francesca Piceci-Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria Cecilia D'Asdia
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Consoli
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
4
|
Kim HJ, Jeon B. Arching deep brain stimulation in dystonia types. J Neural Transm (Vienna) 2021; 128:539-547. [PMID: 33740122 DOI: 10.1007/s00702-021-02304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
Although medical treatment including botulinum toxic injection is the first-line treatment for dystonia, response is insufficient in many patients. In these patients, deep brain stimulation (DBS) can provide significant clinical improvement. Mounting evidence indicates that DBS is an effective and safe treatment for dystonia, especially for idiopathic and inherited isolated generalized/segmental dystonia, including DYT-TOR1A. Other inherited dystonia and acquired dystonia also respond to DBS to varying degrees. For Meige syndrome (craniofacial dystonia), other focal dystonia, and some rare inherited dystonia, further evidences are still needed to evaluate the role of DBS. Because short disease duration at DBS surgery and absence of fixed musculoskeletal deformity are associated with better outcome, DBS should be considered as early as possible when indicated after careful evaluation including genetic work-up. This review will focus on the factors to be considered in DBS for patients with dystonia and the outcome of DBS in the different types of dystonia.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
5
|
Koya Kutty S, Mulroy E, Magrinelli F, Di Lazzaro G, Latorre A, Bhatia KP. Huntington disease-like phenotype in a patient with ANO3 mutation. Parkinsonism Relat Disord 2021; 90:120-122. [PMID: 33640251 DOI: 10.1016/j.parkreldis.2021.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Shahedah Koya Kutty
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom; Department of Internal Medicine, International Islamic University Malaysia, Pahang, Malaysia.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom; Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
6
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
7
|
Albanese A. Deep Brain Stimulation in Dystonia: Disentangling Heterogeneity. Mov Disord Clin Pract 2021; 8:6-8. [PMID: 33426153 PMCID: PMC7780936 DOI: 10.1002/mdc3.13113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Alberto Albanese
- Department of NeurologyIRCCS Humanitas Research HospitalMilanItaly
- Department of NeuroscienceCatholic UniversityMilanItaly
| |
Collapse
|
8
|
The expanding clinical and genetic spectrum of ANO3 dystonia. Neurosci Lett 2020; 746:135590. [PMID: 33388357 DOI: 10.1016/j.neulet.2020.135590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Dystonia is a movement disorder with high clinical and genetic heterogeneity. Mutations in Anoctamin-3 (ANO3) gene have been reported to cause dystonia 24 (DYT24). This study aims to clarify the spectrum and frequency of ANO3 rare variants in Chinese populations with primary dystonia and understand the clinical and genetic features of DYT24. METHODS Sanger sequencing was used to screen all exons and exon-intron boundaries of ANO3 for rare variants in 115 primary dystonia patients. The clinical manifestations of patients with ANO3 variants in our study and previously reported literatures were further characterized. RESULTS Four distinct variants of ANO3 (c.1127A > G, c.1235 T > A, c.1531-3T > C, c.-11G > T) were identified in six unrelated individuals. Combined with our work and literature review, a total of 35 different rare variants distributed in ANO3 were identified in 62 dystonia patients. The predominant phenotype is cranio-cervical dystonia and more than half of patients develop head/limb tremor. Most of patients presented with isolated dystonia whereas few of them showed combined dystonia. The age of onset ranged from 1 to 69 years and peaked in late adulthood, while for generalized dystonia it peaked in a young age. Half of patients with generalized dystonia experienced deep brain stimulation (DBS). And all of them showed improvement of dystonia by DBS. CONCLUSIONS This study confirms a relatively high frequency of rare ANO3 variants in Chinese patients with dystonia and indicates that the late adulthood-onset, cranio-cervical dystonia seems to be an important feature of the ANO3 phenotype. Further functional studies are warranted to understand the role of ANO3 in dystonia.
Collapse
|