1
|
Davighi MG, Clemente F, Matassini C, Cacciarini M, Tanini D, Goti A, Morrone A, Paoli P, Cardona F. Acetal functionalized iminosugars for targeting β-glucocerebrosidase modulation. Eur J Med Chem 2025; 290:117529. [PMID: 40174262 DOI: 10.1016/j.ejmech.2025.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Novel pH-sensitive drug delivery systems offer significant potential for personalized medicine by enabling targeted therapy and minimizing side effects. These systems are designed to release therapeutic agents in acidic environments to achieve localized pharmacological effects. Dysfunctions in lysosomal enzyme β-glucocerebrosidase (GCase) play a crucial role in Gaucher and Parkinson's diseases. While pharmacological chaperones (PCs) stabilize GCase, the overall efficacy in restoring enzyme functionality is often abolished by their reluctance to dissociate from the enzyme once in lysosomes. To address this limitation, we developed pH-sensitive acetal functionalized iminosugars that hydrolyze under weakly acidic conditions, exploiting the pH difference between the endoplasmic reticulum and lysosomes to promote dissociation. Additionally, antioxidant moieties, derived from coniferyl aldehyde and vanillin, were incorporated to counteract oxidative stress, which is prevalent in Gaucher and Parkinson's diseases. The newly synthesized compounds 1-4 exhibit varying degrees of pH sensitivity and GCase stabilization in fibroblast ex vivo assays, with acetal 4 showing promising response, here validated both in lysates and in intact cells.
Collapse
Affiliation(s)
- Maria Giulia Davighi
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Francesca Clemente
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| | - Camilla Matassini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Martina Cacciarini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Damiano Tanini
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Andrea Goti
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy
| | - Amelia Morrone
- Laboratory of Molecular Genetics of Neurometabolic Diseases, Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Viale Pieraccini 24, 50139, Firenze, Italy; Department of Neurosciences, Psycology, Drug Research and Child Health University of Florence, Viale Pieraccini 24, 50139, Firenze, Italy
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry "Ugo Schiff" (DICUS), Via della Lastruccia 3-13, 50019 Sesto F.no (FI), Italy.
| |
Collapse
|
2
|
Grabowski GA, Kishnani PS, Alcalay RN, Prakalapakorn SG, Rosenbloom BE, Tuason DA, Weinreb NJ. Challenges in Gaucher disease: Perspectives from an expert panel. Mol Genet Metab 2025; 145:109074. [PMID: 40112481 DOI: 10.1016/j.ymgme.2025.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
This focused review concentrates on eight topics of high importance for Gaucher disease (GD) clinicians and researchers: 1) The consideration of GD as distinct types rather than a spectrum. A review of the literature clearly supports the view that there are distinct types of GD. Type 1 is characterized by the absence of primary neuronopathic involvement, while types 2 and 3 are characterized by progressive primary neuronopathic disease. 2) Neurologic and neuronopathic manifestations. A growing body of evidence indicates that the peripheral nervous system may be involved in GD type 1 and that there may also be signs and symptoms of central nervous system (CNS) disease in this group. However, GD type 1 is characterized by the absence of primary neuronopathic disease, whereas GD types 2 and 3 are characterized by progressive, albeit variable, primary neuronopathic disease. Abnormalities in saccadic eye movements have been suggested as being diagnostic for neuronopathic GD, but they may also occur in GD type 1 and in other inflammatory diseases. 3) The importance of whole GBA1 sequencing. This approach is superior to exome sequencing because of potential effects of deep intronic variants on gene expression. It also has the capacity to detect variant alleles that might be missed with gene panels. 4) Monoclonal gammopathy of undetermined significance (MGUS). The risks of MGUS, multiple myeloma, and non-Hodgkin's lymphoma are elevated in patients with GD compared to the general population and strong evidence indicates that lyso-Gb1 stimulates the formation of monoclonal immunoglobulins (M-protein) in patients with GD and MGUS. 5) Pulmonary involvement in GD. Pulmonary complications can be identified through spirometry in up to 45 % of patients with GD type 1 and 55 % of those with GD type 3. Limited evidence exists that enzyme replacement therapy (ERT) reduces the severity of these complications in patients with GD type 1. 6) Gaucheromas. These may occur in patients with GD types 1 or 3, but there is little detailed information about their inception, mechanisms underlying growth, cellular organization, and biochemical activities, and no definitive guidance for their management. Gaucheromas behave like benign (i.e. non-metastasizing) neoplasms, and it may be reasonable to classify them as such. 7) Bone and joint involvement. Dual-energy X-ray absorptiometry scans alone are insufficient for monitoring all changes in bone that may occur in patients with GD. Quantitative magnetic resonance imaging (MRI) techniques using Dixon quantitative chemical shift imaging have provided results that correlate with GD severity scores, bone complications, and biomarkers for GD bone involvement. Thoracic kyphosis is a common complication of GD types 1 and 3, and there is very limited information regarding the effects of ERT or substrate synthesis inhibition therapy (SSIT) on this condition. 8) Treatment initiation, selection, combination, and switching. Prompt initiation of treatment in pediatric patients is important as GD can lead to impaired growth, lower peak bone mass, and delayed puberty. These adverse outcomes can often be ameliorated or prevented with timely treatment. Either ERT or eliglustat, a SSIT agent, is suitable as first-line treatment of adults with GD. Studies of switching from ERT to eliglustat, or between different ERT products, have indicated that changing treatment is safe, although efficacy outcomes vary. A critical remaining issue is the lack of treatments capable of reaching the CNS to slow or halt the progression of neuronopathic disease in patients with GD type 2 or 3 and potentially reduce the risk of Parkinson's disease in GD type 1 patients and heterozygotes for GBA1 variants.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, 905 Lasalle Street, GSRB1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - Roy N Alcalay
- Neurological Institute of New York, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - S Grace Prakalapakorn
- Department of Ophthalmology and Pediatrics, Duke University Medical Center, 2351 Erwin Rd, Box 3802, DUMC, Durham, NC 27705-4699, USA.
| | - Barry E Rosenbloom
- Cedars-Sinai Tower Hematology Oncology Medical Group, 9090 Wilshire Blvd #300, Beverly Hills, CA 90211, USA.
| | - Dominick A Tuason
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 800 Howard Ave, New Haven, CT 06510, USA.
| | - Neal J Weinreb
- University of Miami UHealth Sylvester Cancer Center Coral Springs, 8170 Royal Palm Blvd, Coral Springs, FL 33065, USA
| |
Collapse
|
3
|
Lagas JS, Sentmanat MF, Cui X. Efficient GBA1 editing via HDR with ssODNs by outcompeting pseudogene-mediated gene conversion upon CRISPR/Cas9 cleavage. Front Genome Ed 2025; 7:1581743. [PMID: 40371365 PMCID: PMC12075325 DOI: 10.3389/fgeed.2025.1581743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction CRISPR/Cas9-edited induced pluripotent stem cells (iPSCs) are valuable research models for mechanistic studies. However, gene conversion between a gene-pseudogene pair that share high sequence identity and form direct repeats in proximity on the same chromosome can interfere with the precision of gene editing. Mutations in the human beta-glucocerebrosidase gene (GBA1) are associated with Gaucher disease, Parkinson's disease, and Lewy body dementia. During the creation of a GBA1 KO iPSC line, we detected about 70% gene conversion from its pseudogene GBAP1. These events maintained the reading frame and resulted from GBA1-specific cleavage by CRISPR/Cas9, without disrupting the GBA1 gene. Method To increase the percentage of alleles with out-of-frame indels for triggering nonsense-mediated decay of the GBA1 mRNA, we supplied the cells with two single-stranded oligodeoxynucleotide (ssODN) donors as homology-directed repair (HDR) templates. Results We demonstrate that HDR using the ssODN templates effectively competes with gene conversion and enabled biallelic KO clone isolation, whereas the nonallelic homologous recombination (NAHR)-based deletion rate remained the same. Discussion Here, we report a generalizable method to direct cellular DNA repair of double strand breaks at a target gene towards the HDR pathway using exogenous ssODN templates, allowing specific editing of one gene in a gene-pseudogene pair without disturbing the other.
Collapse
Affiliation(s)
| | | | - Xiaoxia Cui
- Department of Genetics, Genome Engineering and Stem Cell Center at the McDonnel Genome Institute (GESC@MGI), School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
4
|
Zhang H, Cao F, Yu J, Liang Y, Wu Y. Investigating plasma lipid profiles in association with Parkinson's disease risk. NPJ Parkinsons Dis 2025; 11:99. [PMID: 40295545 PMCID: PMC12038023 DOI: 10.1038/s41531-025-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Parkinson's Disease (PD) is associated with lipid metabolic disturbances, but the specific roles of lipids in its pathogenesis are unclear. This Mendelian Randomization (MR) study utilized GWAS data and IVW methods to investigate plasma lipids and PD risk. The genetic predispositions to altered levels of triacylglycerols (TAGs), diacylglycerols (DAGs), phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs) are associated with an increased risk of PD, while the genetic predispositions to sphingomyelin (SM) and lysophosphatidylcholines (LPCs) are associated with a reduced risk of PD. Further research is needed to establish the biological mechanisms underlying these relationships.
Collapse
Affiliation(s)
- Houwen Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Fangzheng Cao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Jialin Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Yu Liang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - You Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
5
|
Hwangbo J, Lee MJ, Kim SJ, Park HK, Lee JH. Comparative analysis of methods for measuring glucocerebrosidase enzyme activity in patients with Parkinson's disease with the GBA1 variant. Front Neurol 2025; 16:1523655. [PMID: 40242628 PMCID: PMC11999970 DOI: 10.3389/fneur.2025.1523655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction GBA1 variants are significant genetic risk factors for Parkinson's disease (PD). Accurately measuring glucocerebrosidase (GCase) activity is crucial for understanding disease progression and developing targeted therapies. This study aimed to validate strategies for measuring blood GCase activity in patients with GBA1-associated PD (GBA-PD). Methods We recruited 25 GBA-PD patients and 27 matched PD patients without GBA1 variants (non-GBA-PD). GCase activity from fresh blood was quantified using the 4-methylumbelliferyl β-D-glucopyranoside leukocyte assay (GCaseRaw). The GCase patient/normal control ratio (GCase ratio) was calculated for consistency. GCase activity in dried blood spot (DBS) specimens (GCaseDBS) and plasma glucosylsphingosine (GluSph) levels were measured using LC-MS/MS. The diagnostic accuracy was assessed using area under the curve (AUC) values. Results No significant differences in demographics or disease characteristics were found between GBA-PD and non-GBA-PD patients. GCase activity was significantly lower in patients with GBA-PD (p < 0.001). The GCase ratio exhibited a higher diagnostic accuracy (AUC, 0.93) than GCaseRaw (AUC, 0.88) or GCaseDBS (AUC, 0.78). Plasma GluSph levels were higher in GBA-PD patients and were negatively correlated with the GCase ratio (r = -0.326; p < 0.01). Discussion The relative ratio of GCase activity showed a strong discriminatory potential, distinguishing between GBA-PD and non-GBA-PD.
Collapse
Affiliation(s)
- Jin Hwangbo
- Busan St. Mary's Hospital, Busan, Republic of Korea
| | - Myung Jun Lee
- Pusan National University Hospital, Busan, Republic of Korea
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sang Jin Kim
- Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Hyun Kyung Park
- Special Chemistry Team, Seoul Clinical Laboratories (SCL), Yongin, Republic of Korea
| | - Jae-heyok Lee
- School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
6
|
Rossi M, Schaake S, Usnich T, Boehm J, Steffen N, Schell N, Krüger C, Gül‐Demirkale T, Bahr N, Kleinz T, Madoev H, Laabs B, Gan‐Or Z, Alcalay RN, Lohmann K, Klein C. Classification and Genotype-Phenotype Relationships of GBA1 Variants: MDSGene Systematic Review. Mov Disord 2025; 40:605-618. [PMID: 39927608 PMCID: PMC12006889 DOI: 10.1002/mds.30141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Depending on zygosity and the specific change, different variants in the GBA1 gene can cause Parkinson's disease (PD, PARK-GBA1) with reduced penetrance, act as genetic risk factors for PD or parkinsonism, and/or lead to Gaucher's disease (GD). This MDSGene systematic literature review covers 27,963 patients carrying GBA1 variants from 1082 publications with 794 variants, including 13,342 patients with PD or other forms of parkinsonism. It provides a comprehensive overview of demographic, clinical, and genetic findings from an ethnically diverse sample originating from 82 countries across five continents. The most frequent pathogenic or likely pathogenic variants were "N409S" (aka "N370S"; dominating among Jewish and Whites), and "L483P" (aka "L444P"; dominating among Asians and Hispanics), whereas the most common coding risk variants were "E365K" (E326K), and "T408M" (T369M) (both common among Whites). A novel finding is that early-onset PD patients were predominantly of Asian ethnicity, whereas late-onset PD patients were mainly of White ethnicity. Motor cardinal features were similar between PD patients and other forms of parkinsonism, whereas motor complications and non-motor symptoms were more frequently reported in PD patients carrying "severe" variants than in those with "risk" or "mild" variants. Cognitive decline was reported in most patients after surgical treatment, despite achieving a beneficial motor function response. Most GD patients developing PD harbored the "N409S" variant, were of Ashkenazi Jewish ethnicity, and showed a positive response to chronic levodopa treatment. With this review, we start to fill the gaps regarding genotype-phenotype correlations in GBA1 variant carriers, especially concerning PD. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Servicio de Movimientos Anormales, Departamento de NeurologíaFleniBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Susen Schaake
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Tatiana Usnich
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Nina Steffen
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | | - Clara Krüger
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Tuğçe Gül‐Demirkale
- Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), School of MedicineKoç UniversityIstanbulTurkey
| | - Natascha Bahr
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Teresa Kleinz
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | - Harutyun Madoev
- Institute of Medical Biometry and StatisticsUniversity of LübeckLübeckGermany
| | - Björn‐Hergen Laabs
- Institute of Medical Biometry and StatisticsUniversity of LübeckLübeckGermany
| | - Ziv Gan‐Or
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Clinical Research Unit, The Neuro (Montreal Neurological Institute‐Hospital)McGill UniversityMontrealQuebecCanada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Roy N. Alcalay
- Division of Movement DisordersTel Aviv Sourasky Medical CenterTel AvivIsrael
- Columbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Katja Lohmann
- Institute of NeurogeneticsUniversity of LübeckLübeckGermany
| | | |
Collapse
|
7
|
Caminiti SP, Avenali M, Galli A, Malito R, Cuconato G, Galandra C, Calabrese R, Pilotto A, Padovani A, Blandini F, Perani D, Tassorelli C, Valente EM. Male sex accelerates cognitive decline in GBA1 Parkinson's disease. NPJ Parkinsons Dis 2025; 11:41. [PMID: 40038314 DOI: 10.1038/s41531-025-00883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/09/2025] [Indexed: 03/06/2025] Open
Abstract
We evaluated 128 GBA and 432 nonGBA Parkinson's disease (PD) subjects available from Parkinson's Progression Markers Initiative. Baseline clinical features and dopaminergic activity were assessed, together with clinical follow-up (6.87 ± 3.2 years). Survival analyses assessed the independent and interactive effects of sex and GBA1 mutations on cognitive decline. At baseline, GBA-PD males showed severe motor impairment, sleep disorders and memory deficits. Despite milder motor deficit, compared to GBA-PD males, GBA-PD females showed greater dopaminergic denervation, suggesting the effect of neural reserve. In longitudinal assessment, GBA-PD males showed greater MoCA rate of change per year and greater risk of cognitive impairment than GBA-PD females and nonGBA-PD. In GBA-PD males, both late age at onset and "severe/mild" GBA variants were associated with increased risk of cognitive impairment. Male sex and GBA1 carrier status have an additive value in increasing the risk of cognitive decline in PD. The effect of sex on GBA1-related pathology warrants further examination to address future trials design and patients' selection.
Collapse
Affiliation(s)
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS C. Mondino Foundation, Pavia, Italy
| | - Alice Galli
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Giada Cuconato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of continuity of care and frailty, Neurology Unit, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Ca' Granda Foundation, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS C. Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Emran F, Kays I, Lo CA, Li Y, Chen BE. A drug screening platform for protein expression levels in neurological disorders. Biotechniques 2025; 77:113-124. [PMID: 40177811 DOI: 10.1080/07366205.2025.2484094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
Neurological and psychiatric diseases and disorders affect more than half of the population. Many of these diseases are caused by the malfunctioning of protein synthesis, where too little or too much production of a protein harms a cell and its functions within the brain. We developed a drug screening platform to identify compounds that target the primary cause of these diseases, namely protein expression amounts. This cellular assay monitors protein expression of a target disease gene along with the protein expression of a control gene using the Protein Quantitation Ratioing (PQR) technique. PQR tracks protein concentration using fluorescence. We used human cells and CRISPR-Cas9 genome editing to insert the Protein Quantitation Reporter into target genes. These cells are used in high-throughput drug screening measuring the fluorescence as the assay. Drug hits can be validated using the same PQR technique or animal models of the disease.
Collapse
Affiliation(s)
- Farida Emran
- Centre for Research in Neuroscience, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Ibrahim Kays
- Centre for Research in Neuroscience, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Chiu-An Lo
- Centre for Research in Neuroscience, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Yueyang Li
- Centre for Research in Neuroscience, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute, McGill University Health Centre, Montréal, Québec, Canada
- Departments of Medicine and Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Trainor AR, MacDonald DS, Penney J. Microglia: roles and genetic risk in Parkinson's disease. Front Neurosci 2024; 18:1506358. [PMID: 39554849 PMCID: PMC11564156 DOI: 10.3389/fnins.2024.1506358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The prevalence of neurodegenerative disorders such as Parkinson's disease are increasing as world populations age. Despite this growing public health concern, the precise molecular and cellular mechanisms that culminate in neurodegeneration remain unclear. Effective treatment options for Parkinson's disease and other neurodegenerative disorders remain very limited, due in part to this uncertain disease etiology. One commonality across neurodegenerative diseases is sustained neuroinflammation, mediated in large part by microglia, the innate immune cells of the brain. Initially thought to simply react to neuron-derived pathology, genetic and functional studies in recent years suggest that microglia play a more active role in the neurodegenerative process than previously appreciated. Here, we review evidence for the roles of microglia in Parkinson's disease pathogenesis and progression, with a particular focus on microglial functions that are perturbed by disease associated genes and mutations.
Collapse
Affiliation(s)
| | | | - Jay Penney
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
10
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Lu C, Cai X, Zhi S, Wen X, Shen J, Ercoli T, Simula ER, Masala C, Sechi LA, Solla P. Exploring the Association between Cathepsin B and Parkinson's Disease. Brain Sci 2024; 14:482. [PMID: 38790460 PMCID: PMC11119263 DOI: 10.3390/brainsci14050482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the association between Cathepsin B and Parkinson's Disease (PD), with a particular focus on determining the role of N-acetylaspartate as a potential mediator. METHODS We used summary-level data from Genome-Wide Association Studies (GWAS) for a two-sample Mendelian randomization (MR) analysis, exploring the association between Cathepsin B (3301 cases) and PD (4681 cases). A sequential two-step MR approach was applied (8148 cases) to study the role of N-acetylaspartate. RESULTS The MR analysis yielded that genetically predicted elevated Cathepsin B levels correlated with a reduced risk of developing PD (p = 0.0133, OR: 0.9171, 95% CI: 0.8563-0.9821). On the other hand, the analysis provided insufficient evidence to determine that PD affected Cathepsin B levels (p = 0.8567, OR: 1.0035, 95% CI: 0.9666-1.0418). The estimated effect of N-acetylaspartate in this process was 7.52% (95% CI = -3.65% to 18.69%). CONCLUSIONS This study suggested that elevated Cathepsin B levels decreased the risk of developing PD, with the mediation effect of N-acetylaspartate. Further research is needed to better understand this relationship.
Collapse
Affiliation(s)
- Changhao Lu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Xinyi Cai
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China;
| | - Shilin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China;
| | - Tommaso Ercoli
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
| | - Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP 8 Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (E.R.S.); (L.A.S.)
- Struttura Complessa di Microbiologia e Virologia, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Neurology, University of Sassari, Viale S. Pietro 10, 07100 Sassari, Italy
| |
Collapse
|
12
|
Khani M, Cerquera-Cleves C, Kekenadze M, Crea PAW, Singleton AB, Bandres-Ciga S. Towards a Global View of Parkinson's Disease Genetics. Ann Neurol 2024; 95:831-842. [PMID: 38557965 PMCID: PMC11060911 DOI: 10.1002/ana.26905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
Parkinson's disease (PD) is a global health challenge, yet historically studies of PD have taken place predominantly in European populations. Recent genetics research conducted in non-European populations has revealed novel population-specific genetic loci linked to PD risk, highlighting the importance of studying PD globally. These insights have broadened our understanding of PD etiology, which is crucial for developing disease-modifying interventions. This review comprehensively explores the global genetic landscape of PD, emphasizing the scientific rationale for studying underrepresented populations. It underscores challenges, such as genotype-phenotype heterogeneity and inclusion difficulties for non-European participants, emphasizing the ongoing need for diverse and inclusive research in PD. ANN NEUROL 2024;95:831-842.
Collapse
Affiliation(s)
- Marzieh Khani
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Catalina Cerquera-Cleves
- Pontificia Universidad Javeriana, San Ignacio Hospital, Neurology Unit, Bogotá, Colombia
- CHU de Québec Research Center, Axe Neurosciences, Laval University. Quebec City, Canada
| | - Mariam Kekenadze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
- University College London, Queen Square Institute of Neurology , WC1N 3BG, London, UK
| | - Peter A. Wild Crea
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Furderer ML, Berhe B, Chen TC, Wincovitch S, Jiang X, Tayebi N, Sidransky E, Han TU. A Comparative Biochemical and Pathological Evaluation of Brain Samples from Knock-In Murine Models of Gaucher Disease. Int J Mol Sci 2024; 25:1827. [PMID: 38339105 PMCID: PMC10855869 DOI: 10.3390/ijms25031827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder stemming from biallelic mutations in GBA1, characterized by glucocerebrosidase dysfunction and glucocerebroside and glucosylsphingosine accumulation. Since phenotypes of murine models of GD often differ from those in patients, the careful characterization of Gba1 mutant mice is necessary to establish their ability to model GD. We performed side-by-side comparative biochemical and pathologic analyses of four murine Gba1 models with genotypes L444P/L444P (p.L483P/p.L483P), L444P/null, D409H/D409H (p.D448H/p.D448H) and D409H/null, along with matched wildtype mice, all with the same genetic background and cage conditions. All mutant mice exhibited significantly lower glucocerebrosidase activity (p < 0.0001) and higher glucosylsphingosine levels than wildtype, with the lowest glucocerebrosidase and the highest glucosylsphingosine levels in mice carrying a null allele. Although glucocerebrosidase activity in L444P and D409H mice was similar, D409H mice showed more lipid accumulation. No Gaucher or storage-like cells were detected in any of the Gba1 mutant mice. Quantification of neuroinflammation, dopaminergic neuronal loss, alpha-synuclein levels and motor behavior revealed no significant findings, even in aged animals. Thus, while the models may have utility for testing the effect of different therapies on enzymatic activity, they did not recapitulate the pathological phenotype of patients with GD, and better models are needed.
Collapse
Affiliation(s)
- Makaila L. Furderer
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Bahafta Berhe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Tiffany C. Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Stephen Wincovitch
- Advanced Imaging & Analysis Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Xuntian Jiang
- Washington University Metabolomics Facility, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Tae-Un Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.L.F.); (B.B.); (T.C.C.); (N.T.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|