1
|
Hatamoto Y, Tanoue Y, Yoshimura E, Matsumoto M, Hayashi T, Ogata H, Tanaka S, Tanaka H, Higaki Y. Delayed Eating Schedule Raises Mean Glucose Levels in Young Adult Males: a Randomized Controlled Cross-Over Trial. J Nutr 2023; 153:1029-1037. [PMID: 36858920 DOI: 10.1016/j.tjnut.2022.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Misalignment of meals to the biological clock may cause adverse effects on glucose metabolism. However, the effects of repeated different eating schedules (early compared with late) on glucose concentration throughout the day are poorly understood. OBJECTIVES We examined the effects of different eating schedules on the 24-h glucose response using a continuous glucose monitor (CGM). METHODS Eight young adult males (age, 20.9 ± 3.4 y; body mass index: 21.3 ± 1.8 kg/m2) each followed 2 different eating schedules (early [08:30, 13:30, and 19:30] and late [12:00, 17:00, and 23:00]) in random order. These diet interventions were conducted for 8 d, with an experimental period of 3 d and 2 nights (from dinner on day 7) after 7 d of free living. The 3 meals in each intervention were nutritionally equivalent (55% carbohydrate, 15% protein, and 30% fat). The 24-h mean interstitial glucose concentration on day 8 was obtained under controlled conditions using the CGM (primary outcome). These concentrations were compared among the following 3 schedules using Dunnett's test, with the early eating schedule as reference (1 compared with 2 and 1 compared with 3): 1) early eating schedule (control), 2) late eating schedule according to the clock time (08:00 on day 8 to 08:00 on day 9), and 3) late eating schedule according to the time elapsed since the first meal for 24 h. RESULTS The 24-h mean ± SD interstitial glucose concentrations when participants followed the late eating schedule were higher than those when they followed the early eating schedule in terms of clock time (91.2 ± 2.9 compared with 99.2 ± 4.6 mg/dL, P = 0.003) and time elapsed (91.2 ± 2.9 compared with 98.3 ± 3.8 mg/dL, P < 0.001). CONCLUSIONS A late eating schedule increases the mean 24-h interstitial glucose concentration in young adult males. This insight will have useful implications in determining meal timings, especially for those with conditions such as diabetes.
Collapse
Affiliation(s)
- Yoichi Hatamoto
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan; The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.
| | - Yukiya Tanoue
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan; Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan; Research Organization of Science and Technology, Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Eiichi Yoshimura
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Mai Matsumoto
- Department of Nutritional Epidemiology and Shokuiku, National Institute of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Takanori Hayashi
- Department of Clinical Nutrition, National Institute of Biomedical Innovation, Health, and Nutrition, Tokyo, Japan
| | - Hitomi Ogata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Shigeho Tanaka
- Faculty of Nutrition, Kagawa Nutrition University, Sakado, Japan
| | - Hiroaki Tanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| |
Collapse
|
2
|
Nemirovskaya TL. The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Black MN, Wilkinson JA, Webb EK, Kamal M, Bahniwal R, McGlory C, Phillips SM, Devries MC. Two weeks of single-leg immobilization alters intramyocellular lipid storage characteristics in healthy, young women. J Appl Physiol (1985) 2021; 130:1247-1258. [PMID: 33630674 DOI: 10.1152/japplphysiol.00878.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle disuse rapidly induces insulin resistance (IR). Despite a relationship between intramyocellular lipid (IMCL) content and IR, during muscle-disuse IR develops before IMCL accumulation, suggesting that IMCL are not related to disuse-induced IR. However, recent studies show that it is not total IMCL content, but IMCL size and location that are related to IR. Changes in these IMCL parameters may occur prior to increases in IMCL content, thus contributing to disuse-induced IR. Omega-3 fatty acids may mitigate the effects of disuse on IR by preventing a decline in insulin signaling proteins. Twenty women (age 22 ± 3 yr) received either 5 g·day-1 omega-3 fatty acid or isoenergetic sunflower oil for 4 wk prior to, throughout 2 wk of single-leg immobilization, and during 2 wk of recovery. Changes in IMCL characteristics and insulin signaling proteins were examined in vastus lateralis samples taken before supplementation and immobilization, and following immobilization and recovery. Omega-3 supplementation had no effect. IMCL area density decreased in the subsarcolemmal region during immobilization and recovery (-19% and -56%, respectively, P = 0.009). IMCL size increased in the central intermyofibrillar region during immobilization (43%, P = 0.007), returning to baseline during recovery. PLIN5 and AKT increased during immobilization (87%, P = 0.002; 30%, P = 0.007, respectively). PLIN 5 remained elevated and AKT increased further (15%) during recovery. IRS1, AS160, and GLUT4 decreased during immobilization (-35%, P = 0.001; -44%, P = 0.03; -56%, P = 0.02, respectively), returning to baseline during recovery. Immobilization alters IMCL storage characteristics while negatively affecting unstimulated insulin signaling protein content in young women.NEW & NOTEWORTHY We report that the subcellular storage location of IMCL is altered by limb immobilization, highlighting the need to evaluate IMCL storage location when assessing the effects of disuse on IMCL content. We also found that AKT content increased during immobilization in our female population, contrary to studies in males finding that AKT decreases during disuse, highlighting that men and women may respond differently to disuse and the necessity to include women in all research.
Collapse
Affiliation(s)
- Merryl N Black
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Erin K Webb
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michael Kamal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Ravninder Bahniwal
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Chris McGlory
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, University of McMaster, Hamilton, Ontario, Canada
| | - Michaela C Devries
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
p38 MAPK in Glucose Metabolism of Skeletal Muscle: Beneficial or Harmful? Int J Mol Sci 2020; 21:ijms21186480. [PMID: 32899870 PMCID: PMC7555282 DOI: 10.3390/ijms21186480] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscles respond to environmental and physiological changes by varying their size, fiber type, and metabolic properties. P38 mitogen-activated protein kinase (MAPK) is one of several signaling pathways that drive the metabolic adaptation of skeletal muscle to exercise. p38 MAPK also participates in the development of pathological traits resulting from excessive caloric intake and obesity that cause metabolic syndrome and type 2 diabetes (T2D). Whereas p38 MAPK increases insulin-independent glucose uptake and oxidative metabolism in muscles during exercise, it contrastingly mediates insulin resistance and glucose intolerance during metabolic syndrome development. This article provides an overview of the apparent contradicting roles of p38 MAPK in the adaptation of skeletal muscles to exercise and to pathological conditions leading to glucose intolerance and T2D. Here, we focus on the involvement of p38 MAPK in glucose metabolism of skeletal muscle, and discuss the possibility of targeting this pathway to prevent the development of T2D.
Collapse
|
5
|
Barlow JP, Karstoft K, Vigelsø A, Gram M, Helge JW, Dela F, Pappan K, O'Neil D, Dunn W, Solomon TPJ. Beta-aminoisobutyric acid is released by contracting human skeletal muscle and lowers insulin release from INS-1 832/3 cells by mediating mitochondrial energy metabolism. Metabol Open 2020; 7:100053. [PMID: 32924003 PMCID: PMC7479356 DOI: 10.1016/j.metop.2020.100053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023] Open
Abstract
Aims/hypothesis This study aimed to examine if beta-aminoisobutyric acid (BAIBA) is (i) secreted by skeletal muscle in humans during exercise, (ii) associated with insulin secretory function in vivo, and (iii) directly linked with acute glucose-mediated insulin release by pancreatic beta cells in vitro. Methods Following 2-weeks of single-leg immobilization, plasma BAIBA concentrations were measured in the brachial artery and the femoral veins of each leg in healthy male subjects, at rest and during two-legged dynamic knee-extensor exercise. During a 2-h hyperglycamic clamp, insulin secretory function and levels of plasma BAIBA were assessed in non-diabetic individuals, non-diabetic individuals following 24-h hyperglycemia and patients with type 2 diabetes. Direct effects of BAIBA on acute glucose-mediated insulin release were probed in INS-1832/3 cells under normal and ‘diabetes-like’ conditions. Finally, the effect of BAIBA on mitochondrial function was assessed in INS-1832/3 cells using extracellular flux analysis. Results (i) BAIBA is released from skeletal muscle at rest and during exercise under healthy conditions but is suppressed during exercise following leg immobilization, (ii) plasma BAIBA concentrations inversely associate with insulin secretory function in humans, (iii) BAIBA lowers mitochondrial energy metabolism in INS-1 832/3 cells in parallel with decreased insulin secretion Conclusion/interpretation: BAIBA is a myokine released by skeletal muscle during exercise and indepedantly alters the triggering pathway of insulin secretion in cultured INS-1832/3 cells.
Collapse
Affiliation(s)
- Jonathan P Barlow
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK.,Mitochondrial Profiling Centre, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Kristian Karstoft
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark.,Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Vigelsø
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Gram
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørn W Helge
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Bispebjerg, Denmark
| | | | - Donna O'Neil
- School of Biosciences and Phenome Centre Birmingham, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Warwick Dunn
- School of Biosciences and Phenome Centre Birmingham, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK.,Institute for Metabolism and Systems Research, College of Medical Sciences, University of Birmingham, Edgbaston, UK
| | - Thomas P J Solomon
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK.,Institute for Metabolism and Systems Research, College of Medical Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
6
|
Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P38α-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 2020; 21:ijms21082756. [PMID: 32326654 PMCID: PMC7215762 DOI: 10.3390/ijms21082756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/24/2023] Open
Abstract
To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading.
Collapse
Affiliation(s)
- Svetlana P. Belova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Ekaterina P. Mochalova
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA;
| | - Boris S. Shenkman
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow 123007, Russia; (S.P.B.); (E.P.M.); (B.S.S.)
- Correspondence:
| |
Collapse
|
7
|
Genome-wide meta-analysis associates GPSM1 with type 2 diabetes, a plausible gene involved in skeletal muscle function. J Hum Genet 2020; 65:411-420. [PMID: 31959871 DOI: 10.1038/s10038-019-0720-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWASs) have identified many genetic variations associated with type 2 diabetes mellitus (T2DM) in Asians, but understanding the functional genetic variants that influence traits is often a complex process. In this study, fine mapping and other analytical strategies were performed to investigate the effects of G protein signaling modulator 1 (GPSM1) on insulin resistance in skeletal muscle. A total of 128 single-nucleotide polymorphisms (SNPs) within GPSM1 were analysed in 21,897 T2DM cases and 32,710 healthy controls from seven GWASs. The SNP rs28539249 in intron 9 of GPSM1 showed a nominally significant association with T2DM in Asians (OR = 1.07, 95% CI = 1.04-1.10, P < 10-4). The GPSM1 mRNA was increased in skeletal muscle and correlated with T2DM traits across obese mice model. An eQTL for the cis-acting regulation of GPSM1 expression in human skeletal muscle was identified for rs28539249, and the increased GPSM1 expression related with T2DM traits within GEO datasets. Another independent Asian cohort showed that rs28539249 is associated with the skeletal muscle expression of CACFD1, GTF3C5, SARDH, and FAM163B genes, which are functionally enriched for endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) pathways. Moreover, rs28539249 locus was predicted to disrupt regulatory regions in human skeletal muscle with enriched epigenetic marks and binding affinity for CTCF. Supershift EMSA assays followed luciferase assays demonstrated the CTCF specifically binding to rs28539249-C allele leading to decreased transcriptional activity. Thus, the post-GWAS annotation confirmed the Asian-specific association of genetic variant in GPSM1 with T2DM, suggesting a role for the variant in the regulation in skeletal muscle.
Collapse
|
8
|
Honda T, Kishimoto H, Mukai N, Hata J, Yoshida D, Hirakawa Y, Shibata M, Ohara T, Kumagai S, Ninomiya T. Objectively measured sedentary time and diabetes mellitus in a general Japanese population: The Hisayama Study. J Diabetes Investig 2019; 10:809-816. [PMID: 30387322 PMCID: PMC6497592 DOI: 10.1111/jdi.12968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION The present study aimed to examine cross-sectional associations between objectively measured sedentary time and the prevalence of diabetes mellitus in a general Japanese population, and to elucidate possible mediating roles of diet, obesity and insulin resistance in this relationship. MATERIALS AND METHODS A total of 1,758 community-dwelling individuals aged 40-79 years wore an accelerometer for ≥7 days and underwent a comprehensive health examination in 2012. Diabetes mellitus was diagnosed by a 75-g oral glucose tolerance test. The associations of sedentary time with the presence of diabetes mellitus and the levels of the homeostasis model assessment of insulin resistance were estimated by logistic and linear regression models. RESULTS After adjustment for demographic and lifestyle factors including moderate-to-vigorous physical activity, participants who spent ≥10 h in sedentary time had a significantly higher odds ratio of the presence of diabetes than those who spent <6 h in sedentary time (odds ratio 1.84, 95% confidence interval 1.02-3.31). This significant association remained after adjusting for overall and central obesity (as measured by body mass index and waist circumference), but weakened after adjusting for dietary energy intake or homeostasis model assessment of insulin resistance. Sedentary time was positively associated with homeostasis model assessment of insulin resistance levels among non-diabetic participants after adjusted for obesity or energy intake (P for trend <0.01). CONCLUSIONS Longer sedentary time was associated with a higher prevalence of diabetes mellitus in a general Japanese population. Insulin resistance appeared to be mainly involved in this association. These results highlight the importance of public health strategies targeting reductions in sedentary time for the primary prevention of diabetes mellitus.
Collapse
Grants
- JP16K09244 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP17K01853 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP17K09113 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP17K09114 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP18K07565 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP18K09412 Grants-in-Aid for Scientific Research (C), Ministry of Education, Culture, Sports, Science and Technology
- JP16H05557 Grants-in-Aid for Scientific Research (B), Ministry of Education, Culture, Sports, Science and Technology
- JP16H05850 Grants-in-Aid for Scientific Research (B), Ministry of Education, Culture, Sports, Science and Technology
- JP17H04126 Grants-in-Aid for Scientific Research (B), Ministry of Education, Culture, Sports, Science and Technology
- JP18H02737 Grants-in-Aid for Scientific Research (B), Ministry of Education, Culture, Sports, Science and Technology
- JP16H02644 Grants-in-Aid for Scientific Research (A), Ministry of Education, Culture, Sports, Science and Technology
- JP16H02692 Grants-in-Aid for Scientific Research (A), Ministry of Education, Culture, Sports, Science and Technology
- JP18K17382 Grants-in-Aid for Early-Career Scientists, Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP18K17925 Grants-in-Aid for Early-Career Scientists, Ministry of Education, Culture, Sports, Science and Technology of Japan
- JP18dk0207025 Japan Agency for Medical Research and Development
- JP18ek0210080 Japan Agency for Medical Research and Development
- JP18ek0210082 Japan Agency for Medical Research and Development
- JP18ek0210083 Japan Agency for Medical Research and Development
- JP18fk0108075 Japan Agency for Medical Research and Development
- JP18gm0610007 Japan Agency for Medical Research and Development
- JP18km0405202 Japan Agency for Medical Research and Development
- H29-Junkankitou-Ippan-003 Health and Labor Sciences Research Grants of the Ministry of Health, Labor and Welfare
- H30-Shokuhin-[Sitei]-005 Health and Labor Sciences Research Grants of the Ministry of Health, Labor and Welfare
Collapse
Affiliation(s)
- Takanori Honda
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Hiro Kishimoto
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Naoko Mukai
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Jun Hata
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Daigo Yoshida
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Yoichiro Hirakawa
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Department of Medicine and Clinical ScienceGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Mao Shibata
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Department of Psychosomatic MedicineKyushu University HospitalFukuoka CityFukuoka,Japan
| | - Tomoyuki Ohara
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Department of NeuropsychiatryGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| | - Shuzo Kumagai
- Center for Health Science and CounselingKyushu UniversityKasuga CityFukuokaJapan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public HealthGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
- Center for Cohort StudiesGraduate School of Medical SciencesKyushu UniversityFukuoka CityFukuokaJapan
| |
Collapse
|
9
|
Appriou Z, Nay K, Pierre N, Saligaut D, Lefeuvre-Orfila L, Martin B, Cavey T, Ropert M, Loréal O, Rannou-Bekono F, Derbré F. Skeletal muscle ceramides do not contribute to physical-inactivity-induced insulin resistance. Appl Physiol Nutr Metab 2019; 44:1180-1188. [PMID: 30889368 DOI: 10.1139/apnm-2018-0850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physical inactivity increases the risk to develop type 2 diabetes, a disease characterized by a state of insulin resistance. By promoting inflammatory state, ceramides are especially recognized to alter insulin sensitivity in skeletal muscle. The present study was designed to analyze, in mice, whether muscle ceramides contribute to physical-inactivity-induced insulin resistance. For this purpose, we used the wheel lock model to induce a sudden reduction of physical activity, in combination with myriocin treatment, an inhibitor of de novo ceramide synthesis. Mice were assigned to 3 experimental groups: voluntary wheel access group (Active), a wheel lock group (Inactive), and wheel lock group treated with myriocin (Inactive-Myr). We observed that 10 days of physical inactivity induces hyperinsulinemia and increases basal insulin resistance (HOMA-IR). The muscle ceramide content was not modified by physical inactivity and myriocin. Thus, muscle ceramides do not play a role in physical-inactivity-induced insulin resistance. In skeletal muscle, insulin-stimulated protein kinase B phosphorylation and inflammatory pathway were not affected by physical inactivity, whereas a reduction of glucose transporter type 4 content was observed. Based on these results, physical-inactivity-induced insulin resistance seems related to a reduction in glucose transporter type 4 content rather than defects in insulin signaling. We observed in inactive mice that myriocin treatment improves glucose tolerance, insulin-stimulated protein kinase B, adenosine-monophosphate-activated protein kinase activation, and glucose transporter type 4 content in skeletal muscle. Such effects occur regardless of changes in muscle ceramide content. These findings open promising research perspectives to identify new mechanisms of action for myriocin on insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Zéphyra Appriou
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Kévin Nay
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Nicolas Pierre
- GIGA-R - Translational Gastroenterology, Liège University, Belgium
| | - Dany Saligaut
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Brice Martin
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Thibault Cavey
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France.,Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Olivier Loréal
- INSERM NuMeCan UMR 1274, CIMIAD, France, Faculty of Medicine, University of Rennes, Rennes, France
| | - Françoise Rannou-Bekono
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences", EA7470 - University of Rennes - ENS Rennes, Bruz, France
| |
Collapse
|
10
|
Kawamoto E, Tamakoshi K, Ra SG, Masuda H, Kawanaka K. Immobilization rapidly induces thioredoxin-interacting protein gene expression together with insulin resistance in rat skeletal muscle. J Appl Physiol (1985) 2018; 125:596-604. [DOI: 10.1152/japplphysiol.00951.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute short duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Because thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-h hindlimb immobilization by plaster cast. At the end of this period, the soleus muscles from both immobilized and contralateral nonimmobilized hindlimbs were excised and examined. The 6-h immobilization resulted in an increase in TXNIP mRNA and protein expressions together with a decrease in insulin-stimulated 2-deoxyglucose uptake in the rat soleus muscle. Additionally, in the rats euthanized 6 h after the plaster cast removal, TXNIP protein expression and insulin-stimulated glucose uptake in the immobilized muscle had both been restored to a normal level. Various interventions (pretreatment with transcription inhibitor actinomycin D or AMP-dependent protein kinase activator 5-aminoimidazole-4-carboxamide ribonucleotide) also suppressed the increase in TXNIP protein expression in 6-h-immobilized muscle together with partial prevention of insulin resistance for glucose uptake. These results suggested the possibility that increased TXNIP protein expression in immobilized rat soleus muscles was associated with the rapid induction of insulin resistance for glucose uptake in that tissue. NEW & NOTEWORTHY The cellular mechanism by which disuse rapidly induces muscle insulin resistance for glucose uptake remains to be identified. Using a rat hindlimb immobilization model, our findings suggest the possibility that transcriptional upregulation of thioredoxin-interacting protein is associated with the immobilization-induced rapid development of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Emi Kawamoto
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
- Department of Materials Engineering, Nagaoka National College of Technology, Nagaoka, Japan
| | - Keigo Tamakoshi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Song-Gyu Ra
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hiroyuki Masuda
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Kentaro Kawanaka
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
11
|
Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death Differ 2018; 25:1581-1597. [PMID: 29449644 PMCID: PMC6143622 DOI: 10.1038/s41418-018-0063-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/24/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle differentiation is controlled by multiple cell signaling pathways, however, the JNK/MAPK signaling pathway dominating this process has not been fully elucidated. Here, we report that the JNK/MAPK pathway was significantly downregulated in the late stages of myogenesis, and in contrast to P38/MAPK pathway, it negatively regulated skeletal muscle differentiation. Based on the PAR-CLIP-seq analysis, we identified six elevated miRNAs (miR-1a-3p, miR-133a-3p, miR-133b-3p, miR-206-3p, miR-128-3p, miR-351-5p), namely myogenesis-associated miRNAs (mamiRs), negatively controlled the JNK/MAPK pathway by repressing multiple factors for the phosphorylation of the JNK/MAPK pathway, including MEKK1, MEKK2, MKK7, and c-Jun but not JNK protein itself, and as a result, expression of transcriptional factor MyoD and mamiRs were further promoted. Our study revealed a novel double-negative feedback regulatory pattern of cell-specific miRNAs by targeting phosphorylation kinase signaling cascade responsible for skeletal muscle development.
Collapse
|
12
|
Geng S, Wang S, Zhu W, Xie C, Li X, Wu J, Zhu J, Jiang Y, Yang X, Li Y, Chen Y, Wang X, Meng Y, Zhu M, Wu R, Huang C, Zhong C. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways. Toxicol Lett 2017; 272:75-83. [DOI: 10.1016/j.toxlet.2017.03.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
|
13
|
Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep 2017; 4:4/15/e12876. [PMID: 27482072 PMCID: PMC4985544 DOI: 10.14814/phy2.12876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022] Open
Abstract
Acute short‐duration physical inactivity induces the development of insulin resistance for glucose uptake in skeletal muscle. We examined the possibility that inactivity rapidly induces muscle insulin resistance via the excessive activation of proinflammatory/stress pathways including those of IKK/IκB/NF‐κB, JNK, and p38 MAPK. We also examined the other possibility that inactivity‐induced rapid development of insulin resistance is associated with reduced phosphorylation of AS160, the most distal insulin‐signaling protein that have been linked to the regulation of glucose uptake. Male Wistar rats were subjected to unilateral hindlimb immobilization for 6 h. At the end of the immobilization, the soleus muscles from both immobilized and contralateral non‐immobilized hindlimbs were dissected out. Immobilization decreased insulin‐stimulated 2‐deoxyglucose uptake in rat soleus muscle within 6 h. This rapid development of insulin resistance was accompanied by elevated phosphorylation of both JNK and p38 (commonly used indicator of JNK and p38 pathway activity, respectively). In addition, the abundance of SPT2, a rate‐limiting enzyme regulating ceramide biosynthesis, was increased in immobilized muscle. Immobilization did not alter the abundance of IκBα (commonly used indicator of IKK/IκB/NF‐κB pathway activity). The basal phosphorylation of AS160 at Thr642 and Ser588 was decreased together with the development of insulin resistance. These results suggest the possibility that inactivity‐induced rapid development of insulin resistance in immobilized muscle is related to enhanced activation of JNK and/or p38. Elevated ceramide biosynthesis pathway may contribute to this activation. Our results also indicate that decreased basal phosphorylation of AS160 may be involved in inactivity‐induced insulin resistance.
Collapse
Affiliation(s)
- Emi Kawamoto
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan Department of Materials Engineering, Nagaoka National College of Technology, Nagaoka, Japan
| | - Keiichi Koshinaka
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Tatsuhiko Yoshimura
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroyuki Masuda
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Kentaro Kawanaka
- Department of Health and Nutrition, Niigata University of Health and Welfare, Niigata, Japan Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|