1
|
Sehgal A, Levins C, Yeomans E, Lu Z, Metz D. Proteinuria in preterm neonates: influence of fetal growth restriction. J Perinatol 2025:10.1038/s41372-025-02306-0. [PMID: 40253560 DOI: 10.1038/s41372-025-02306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE To compare proteinuria in preterm neonates with fetal growth restriction-small for gestational age (FGR-SGA) against equally preterm but appropriate for gestational age (AGA) neonates. STUDY DESIGN Prospective, observational cohort study. RESULTS Eighteen FGR-SGA neonates were compared with 18 AGA neonates (gestation; 29 ± 1 vs 29 ± 2 weeks, P = 0.8). Urine total protein (median [interquartile range]) in FGR-SGA was higher 370 [323, 573] vs 255 [193, 453] mg/L in AGA, P = 0.017 at first assessment (week one) and 565 [445, 743] vs 225 [135, 458] mg/L, P = 0.0011 at second assessment (week four). Urine protein creatinine ratio was 393 [250, 445] in FGR-SGA vs 227 [163, 367] mg/mmol in AGA, P = 0.029 at first assessment and 444 [368, 699] vs 240 [199, 411] mg/mmol, P = 0.0014 at second assessment. Mean blood pressure was higher in FGR-SGA group & directly correlated with proteinuria. CONCLUSIONS Increased proteinuria in FGR-SGA suggests reduced nephron endowment and hyper-filtration.
Collapse
Affiliation(s)
- Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
- Department of Pediatrics, Monash University, Melbourne, VIC, Australia.
| | - Criona Levins
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC, Australia
| | - Emma Yeomans
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- Department of Pediatrics, Monash University, Melbourne, VIC, Australia
| | - Zhong Lu
- Department of Biochemistry, Monash Health, Melbourne, VIC, Australia
| | - David Metz
- Department of Pediatrics, Monash University, Melbourne, VIC, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
2
|
McArdle Z, Singh R, Bielefeldt-Ohmann H, Moritz K, Schreuder M, Denton K. Brief Early Life Angiotensin Converting Enzyme Inhibition Offers Reno-Protection in Sheep with a Solitary Functioning Kidney at 8 Months of Age. J Am Soc Nephrol 2022; 33:1341-1356. [PMID: 35351818 PMCID: PMC9257814 DOI: 10.1681/asn.2021111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/03/2022] Open
Abstract
Background: Children born with a solitary functioning kidney (SFK) are predisposed to develop hypertension and kidney injury. Glomerular hyperfiltration and hypertrophy contribute to the pathophysiology of kidney injury. Angiotensin converting enzyme inhibitors (ACEi) can mitigate hyperfiltration and may be therapeutically beneficial in reducing progression of kidney injury in SFK. Methods: SFK was induced in male sheep fetuses at 100 days gestation (term=150 day). Between 4-8 weeks of age, SFK lambs received enalapril (SFK+ACEi; 0.5mg/kg/day, once daily, orally) or vehicle (SFK). At 8 months we examined whether SFK+ACEi reduced elevation in blood pressure (BP) and improved basal kidney function, renal functional reserve (RFR; glomerular filtration rate (GFR) response to combined amino acid and dopamine infusion), GFR response to nitric oxide synthase (NOS) inhibition and basal nitric oxide (NO) bioavailability (basal urinary total nitrate+nitrite (NOx)). Results: SFK+ACEi prevented albuminuria, resulted in lower basal GFR (16%), higher renal blood flow (~22%), and lower filtration fraction ( 35%), but similar BP compared to ~ vehicle-treated SFK sheep. Together with greater recruitment of RFR (~14%) in SFK+ACEi animals than SFK, this indicates reduction in glomerular hyperfiltration-mediated kidney dysfunction. During NOS inhibition, the decrease in GFR ( 14%) was greater among SFK+ACEi than among SFK animals. Increased ( 85%) basal urinary total NOx in SFK+ACEi animals compared to SFK indicates elevated NO bioavailability likely contributing to improvements in kidney function and prevention of albuminuria. Conclusions: Brief and early ACEi in SFK is associated with reduced glomerular hyperfiltration-mediated kidney disease up to 8 months of age in a sheep model.
Collapse
Affiliation(s)
- Zoe McArdle
- Z McArdle, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Reetu Singh
- R Singh, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Helle Bielefeldt-Ohmann
- H Bielefeldt-Ohmann, School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Karen Moritz
- K Moritz, Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Saint Lucia, Australia
| | - Michiel Schreuder
- M Schreuder, Department of Pediatric Nephrology , Amalia Children's Hospital, Nijmegen, Netherlands
| | - Kate Denton
- K Denton, Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Torreggiani M, Fois A, D’Alessandro C, Colucci M, Orozco Guillén AO, Cupisti A, Piccoli GB. Of Mice and Men: The Effect of Maternal Protein Restriction on Offspring's Kidney Health. Are Studies on Rodents Applicable to Chronic Kidney Disease Patients? A Narrative Review. Nutrients 2020; 12:E1614. [PMID: 32486266 PMCID: PMC7352514 DOI: 10.3390/nu12061614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the almost 30 years that have passed since the postulation of the "Developmental Origins of Health and Disease" theory, it has been clearly demonstrated that a mother's dietary habits during pregnancy have potential consequences for her offspring that go far beyond in utero development. Protein malnutrition during pregnancy, for instance, can cause severe alterations ranging from intrauterine growth retardation to organ damage and increased susceptibility to hypertension, diabetes mellitus, cardiovascular diseases and chronic kidney disease (CKD) later in life both in experimental animals and humans. Conversely, a balanced mild protein restriction in patients affected by CKD has been shown to mitigate the biochemical derangements associated with kidney disease and even slow its progression. The first reports on the management of pregnant CKD women with a moderately protein-restricted plant-based diet appeared in the literature a few years ago. Today, this approach is still being debated, as is the optimal source of protein during gestation in CKD. The aim of this report is to critically review the available literature on the topic, focusing on the similarities and differences between animal and clinical studies.
Collapse
Affiliation(s)
- Massimo Torreggiani
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Antioco Fois
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Marco Colucci
- Unit of Nephrology and Dialysis, ICS Maugeri S.p.A. SB, Via S. Maugeri 10, 27100 Pavia, Italy;
| | | | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (C.D.); (A.C.)
| | - Giorgina Barbara Piccoli
- Nephrology and Dialysis, Centre Hospitalier Le Mans, Avenue Roubillard 194, 72000 Le Mans, France; (A.F.); (G.B.P.)
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, 10100 Torino, Italy
| |
Collapse
|
4
|
Jain J, Legan SK, Alhamoud I, Gattineni J, Baum M. Effect of sex on glomerular filtration rate in programmed rats by prenatal dexamethasone. Physiol Rep 2020; 7:e14154. [PMID: 31243892 PMCID: PMC6594923 DOI: 10.14814/phy2.14154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
We have previously demonstrated that dexamethasone administered to pregnant rats during specific times during gestation results in a reduction in glomerular number and hypertension in offspring at 2 and 6 months of age. In this study, we examined the effect of prenatal dexamethasone administered daily on days 15 and 16 of gestation in male and female offspring after 1 year of age on glomerular filtration rate. The prenatal dexamethasone male group had a higher systolic blood pressure than the vehicle male group. Females had lower systolic blood pressures than the males and prenatal dexamethasone did not affect blood pressure in female offspring. Prenatal dexamethasone resulted in a reduction in glomerular filtration rate in male but not in female rats. When corrected for body weight, the control male rats had a lower glomerular filtration rate than the control female rats. Males had greater protein excretion than females and prenatal dexamethasone increased the protein excretion only in male rats. Glomerulosclerosis was also greater in male rats than females but was not affected by prenatal dexamethasone. In summary, male rats appear to have evidence of a decline in glomerular filtration rate after 1 year of age and prenatal dexamethasone programs an accelerated decline in glomerular filtration rate in male but not in female offspring.
Collapse
Affiliation(s)
- Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
5
|
Andreeva–Gateva PA, Mihaleva ID, Dimova II. Type 2 diabetes mellitus and cardiovascular risk; what the pharmacotherapy can change through the epigenetics. Postgrad Med 2019; 132:109-125. [DOI: 10.1080/00325481.2019.1681215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavlina A. Andreeva–Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Department of Pharmacology, Medical Faculty, Sofia University “St Kliment Ohridski”, Sofia, Bulgaria
| | - Ivelina D. Mihaleva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivanka I. Dimova
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Mansuri A, Elmaghrabi A, Alhamoud I, Legan SK, Gattineni J, Baum M. Transient enalapril attenuates the reduction in glomerular filtration rate in prenatally programmed rats. Physiol Rep 2018; 5:5/8/e13266. [PMID: 28438986 PMCID: PMC5408291 DOI: 10.14814/phy2.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
A maternal low‐protein diet has been shown to program hypertension and a reduction in glomerular filtration rate in adult offspring. This study examined the effect of continuous administration of enalapril in the drinking water and transient administration of enalapril administered from 21 to 42 days of age on blood pressure and glomerular filtration rate (GFR) in male rats whose mothers were fed a 20% protein diet (control) or a 6% protein diet (programmed) during the last half of pregnancy. After birth all rats were fed a 20% protein diet. Programmed rats (maternal 6% protein diet) were hypertensive at 15 months of age compared to control rats and both continuous and transient administration of enalapril had no effect on blood pressure on control offspring, but normalized the blood pressure of programmed offspring. GFR was 3.2 ± 0.1 mL/min in the control group and 1.7 ± 0.1 mL/min in the programmed rats at 17 months of age (P < 0.001). The GFR was 3.0 ± 0.1 mL/min in the control and 2.7 ± 0.1 mL/min in the programmed group that received continuous enalapril in their drinking water showing that enalapril can prevent the decrease in GFR in programmed rats. Transient administration of enalapril had no effect on GFR in the control group (3.2 ± 0.1 mL/min) and prevented the decrease in GFR in the programmed group (2.9 ± 0.1 mL/min). In conclusion, transient exposure to enalapril for 3 weeks after weaning can prevent the hypertension and decrease in GFR in prenatal programmed rats.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Ayah Elmaghrabi
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
7
|
Mansuri A, Legan SK, Jain J, Alhamoud I, Gattineni J, Baum M. Effect of renal denervation on urine angiotensinogen excretion in prenatally programmed rats. Physiol Rep 2017; 5:5/20/e13482. [PMID: 29051307 PMCID: PMC5661239 DOI: 10.14814/phy2.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Prenatal programming results in an increase in blood pressure in adult offspring. We have shown that compared to control adult offspring whose mothers were fed a 20% protein diet, programmed adults whose mothers were fed a 6% protein diet during the last half of pregnancy have an increase in renal sympathetic nerve activity and urinary angiotensinogen/creatinine levels. We hypothesized that the increase in urinary angiotensinogen was mediated by renal sympathetic nerve activity in programmed rats. In this study performed in 3 month old rats, renal denervation resulted in normalization of blood pressure in the 6% programmed group (150 ± 3 Hg in 6% sham vs. 121 ± 4 Hg in 6% denervated, P < 0.001), and a reduction in blood pressure in the 20% group (126 ± 2 Hg 20% sham vs. 113 ± 4 Hg 20% denervated (P < 0.05). We confirm that the intrarenal renin–angiotensin system assessed by urinary angiotensinogen/creatinine is upregulated in offspring of rats fed a 6% protein diet rats compared to 20% controls. To determine if sympathetic nerve activity was mediating the increase in urinary angiotensinogen in programmed rats, we compared denervated to sham‐operated control and programmed rats. Renal denervation had no effect on urinary angiotensinogen/creatinine ratio in the 20% group and no effect on the increased urinary angiotensinogen/creatinine ratio found in programmed rats. This study demonstrates that the increase in urinary angiotensinogen in programmed rats is not mediated by renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|