1
|
Ro HJ, Ogalo E, Debenham MIB, Wu H, Hanlan AK, O'Connor R, Bristol SG, Doherty CJ, Brown EE, Berger MJ. Ultrasound Evaluation of Upper Limb Sublesional Muscle Morphology in Cervical Spinal Cord Injury. Muscle Nerve 2025; 71:564-573. [PMID: 39854114 PMCID: PMC11887526 DOI: 10.1002/mus.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025]
Abstract
INTRODUCTION/AIMS Upper limb paralysis is arguably the most limiting consequence of cervical spinal cord injury (cSCI). There is limited knowledge regarding the early structural changes of muscles implicated in grasp/pinch function and upper extremity nerve transfer surgeries. We evaluated: (1) muscle size and echo intensity (EI) in subacute cSCI (2-6 months) and (2) the influence of lower motor neuron (LMN) damage on these ultrasound parameters. METHODS Cross-sectional B-mode images were captured bilaterally in individuals with cSCI (injury duration: 3.3 ± 1.2 months; C4-C6 injury levels; American Spinal Injuries Association Impairment Scale A-C; 45.7 ± 13.7 years; 3 females, 14 males) for biceps brachii (BB), extensor carpi ulnaris, extensor indicis proprius, flexor pollicis longus (FPL), and first dorsal interosseous. Each limb was analyzed as an independent event (n = 34). Cross-sectional area (CSA), thickness (MT), and EI were compared to healthy controls (HC). BB and FPL concentric needle electromyography (EMG) data were also obtained. Abnormal LMN health was defined by the presence of pathological spontaneous activity. RESULTS Relative to HC, forearm and hand muscle size were 15%-41% lower (p < 0.05), while EI was 21%-40% higher (p < 0.05); no significant differences were observed for sublesional BB muscles (n = 16) (p > 0.05). Muscles demonstrating abnormal LMN health displayed reduced BB MT and elevated FPL EI (p < 0.05). DISCUSSION These results underscore the substantial changes in forearm and hand muscle morphology within the subacute period after cSCI, with preliminary evidence suggesting that these changes are influenced by LMN damage.
Collapse
Affiliation(s)
- Hannah J. Ro
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
| | - Emmanuel Ogalo
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mathew I. B. Debenham
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
| | - Harvey Wu
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
| | - Amy K. Hanlan
- Division of Physical Medicine and Rehabilitation, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Russell O'Connor
- Division of Physical Medicine and Rehabilitation, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sean G. Bristol
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
- Division of Plastic Surgery, Department of SurgeryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher J. Doherty
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
- Division of Plastic Surgery, Department of SurgeryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Erin E. Brown
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
- Division of Plastic Surgery, Department of SurgeryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael J. Berger
- International Collaboration on Repair Discoveries (ICORD)VancouverBritish ColumbiaCanada
- Division of Physical Medicine and Rehabilitation, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Stevanovic S, Dalmao-Fernandez A, Mohamed D, Nyman TA, Kostovski E, Iversen PO, Savikj M, Nikolic N, Rustan AC, Thoresen GH, Kase ET. Time-dependent reduction in oxidative capacity among cultured myotubes from spinal cord injured individuals. Acta Physiol (Oxf) 2024; 240:e14156. [PMID: 38711362 DOI: 10.1111/apha.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI. METHODS To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured. RESULTS The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins. CONCLUSION In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury.
Collapse
Affiliation(s)
- Stanislava Stevanovic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Derya Mohamed
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emil Kostovski
- Vestre Viken Hospital Trust, Drammen, Norway
- Manifestsenteret, Røyken, Norway
| | - Per Ole Iversen
- Department of Nutrition, IMB, University of Oslo, Oslo, Norway
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Mladen Savikj
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Natasa Nikolic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili T Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Cartaxo AL, Fernandes-Platzgummer A, Rodrigues CA, Melo AM, Tecklenburg K, Margreiter E, Day RM, da Silva CL, Cabral JM. Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System. Tissue Eng Part C Methods 2023; 29:583-595. [PMID: 37842845 PMCID: PMC10714258 DOI: 10.1089/ten.tec.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.
Collapse
Affiliation(s)
- Ana Luísa Cartaxo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Melo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Richard M. Day
- Centre for Precision Healthcare, Division of Medicine, University College London, London, United Kingdom
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Zumwalt M, Reddy AP. Stem Cells for Treatment of Musculoskeletal Conditions - Orthopaedic/Sports Medicine Applications. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165624. [PMID: 31794866 DOI: 10.1016/j.bbadis.2019.165624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/20/2022]
Abstract
A myriad of musculoskeletal conditions afflicts a vast number of the world's population from birth to death. Countless pathological diseases and traumatic injuries (acute and chronic) contribute to different human disabilities, causing a tremendous financial toll on the economy of healthcare. The medical field is continually searching for novel ways to combat orthopedically related conditions. The immediate goal is the restoration of anatomy then ultimately return of function in hopes of enhancing quality if not the quantity of life. Traditional methods involve surgical correction/reconstruction of skeletal deformities from fractures/soft tissue damage/ruptures or replacement/resection of degenerated joints. Modern research is currently concentrating on innovative procedures to replenish/restore the human body close to its original/natural state [1, 2].
Collapse
Affiliation(s)
- Mimi Zumwalt
- Texas Tech University Health Sciences Center, Department of Orthopaedic Surgery, 3601 4(th) Street STOP 9436, Lubbock, TX 79430 United States of America.
| | - Arubala P Reddy
- Texas Tech University, 1301 Akron Avenue, Lubbock, TX 79409 United States of America.
| |
Collapse
|
5
|
Graham ZA, Goldberger A, Azulai D, Conover CF, Ye F, Bauman WA, Cardozo CP, Yarrow JF. Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. Physiol Rep 2020; 8:e14357. [PMID: 32026570 PMCID: PMC7002538 DOI: 10.14814/phy2.14357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
To determine whether muscle disuse after a spinal cord injury (SCI) produces elevated markers of cellular senescence and induces markers of the senescence-associated secretory phenotypes (SASPs) in paralyzed skeletal muscle. Four-month-old male Sprague-Dawley rats received a moderate-severe (250 kiloDyne) T-9 contusion SCI or Sham surgery and were monitored over 2 weeks, and 1-, 2-, or 3 months. Animals were sacrificed via isoflurane overdose and terminal exsanguination and the soleus was carefully excised and snap frozen. Protein expression of senescence markers p53, p27, and p16 was determined from whole soleus lysates using Western immunoblotting and RT-qPCR was used to determine the soleus gene expression of IL-1α, IL-1β, IL-6, CXCL1, and TNFα. SCI soleus muscle displayed 2- to 3-fold higher total p53 protein expression at 2 weeks, and at 1 and 2 months when compared with Sham. p27 expression was stable across all groups and timepoints. p16 protein expression was lower at 3 months in SCI versus Sham, but not earlier timepoints. Gene expression was relatively stable between groups at 2 weeks. There were Surgery x Time interaction effects for IL-6 and TNFα mRNA expression but not for IL-1α, IL-1β, or CXCL1. There were no main effects for time or surgery for IL-1α, IL-1β, or CXCL1, but targeted t tests showed reductions in IL-1α and CXCL1 in SCI animals compared to Sham at 3 months and IL-1β was reduced in SCI animals compared to Sham animals at the 2-month timepoint. The elevation in p53 does not appear consistent with the induction of SASP because mRNA expression of cytokines associated with senescence was not uniformly upregulated and, in some instances, was downregulated in the early chronic phase of SCI.
Collapse
Affiliation(s)
- Zachary A. Graham
- Research ServiceBirmingham VA Medical CenterBirminghamALUSA
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama‐BirminghamBirminghamALUSA
| | - Abigail Goldberger
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
| | - Daniella Azulai
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
| | - Christine F. Conover
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - Fan Ye
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
| | - William A. Bauman
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christopher P. Cardozo
- Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters VA Medical CenterBronxNYUSA
- Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Joshua F. Yarrow
- Research Service and Brain Rehabilitation Research CenterMalcolm Randall VA Medical CenterNorth Florida/South Georgia Veterans Health SystemGainesvilleFLUSA
- Division of Endocrinology, Diabetes, and MetabolismUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
6
|
Abdelmoez AM, Sardón Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 2019; 318:C615-C626. [PMID: 31825657 PMCID: PMC7099524 DOI: 10.1152/ajpcell.00540.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Savikj M, Ruby MA, Kostovski E, Iversen PO, Zierath JR, Krook A, Widegren U. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals. Physiol Rep 2019; 6:e13739. [PMID: 29906337 PMCID: PMC6003643 DOI: 10.14814/phy2.13739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord‐injured and six able‐bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer‐based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able‐bodied and spinal cord‐injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord‐injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord‐injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt‐mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord‐injured individuals was unchanged (P > 0.05) compared to able‐bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy.
Collapse
Affiliation(s)
- Mladen Savikj
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maxwell A Ruby
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Emil Kostovski
- Science Department, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per O Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Widegren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|