1
|
DeRuisseau LR, Receno CN, Cunningham C, Bates ML, Goodell M, Liang C, Eassa B, Pascolla J, DeRuisseau KC. Breathing and Oxygen Carrying Capacity in Ts65Dn and Down Syndrome. FUNCTION 2023; 4:zqad058. [PMID: 37954975 PMCID: PMC10634617 DOI: 10.1093/function/zqad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Individuals with Down syndrome (Ds) are at increased risk of respiratory infection, aspiration pneumonia, and apnea. The Ts65Dn mouse is a commonly used model of Ds, but there have been no formal investigations of awake breathing and respiratory muscle function in these mice. We hypothesized that breathing would be impaired in Ts65Dn vs. wild-type (WT), and would be mediated by both neural and muscular inputs. Baseline minute ventilation was not different at 3, 6, or 12 mo of age. However, VT/Ti, a marker of the neural drive to breathe, was lower in Ts65Dn vs. WT and central apneas were more prevalent. The response to breathing hypoxia was not different, but the response to hypercapnia was attenuated, revealing a difference in carbon dioxide sensing, and/or motor output in Ts65Dn. Oxygen desaturations were present in room air, demonstrating that ventilation may not be sufficient to maintain adequate oxygen saturation in Ts65Dn. We observed no differences in arterial PO2 or PCO2, but Ts65Dn had lower hemoglobin and hematocrit. A retrospective medical record review of 52,346 Ds and 52,346 controls confirmed an elevated relative risk of anemia in Ds. We also performed eupneic in-vivo electromyography and in-vitro muscle function and histological fiber typing of the diaphragm, and found no difference between strains. Overall, conscious respiration is impaired in Ts65Dn, is mediated by neural mechanisms, and results in reduced hemoglobin saturation. Oxygen carrying capacity is reduced in Ts65Dn vs. WT, and we demonstrate that individuals with Ds are also at increased risk of anemia.
Collapse
Affiliation(s)
- Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY 14850, USA
| | - Caitlin Cunningham
- Department of Statistics, Mathematics and Computer Science, Le Moyne College, Syracuse, NY 13214, USA
| | - Melissa L Bates
- Departments of Health and Human Physiology, Internal Medicine, and the Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Morgan Goodell
- Lake Erie College of Osteopathic Medicine, Elmira, NY 14901, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Brianna Eassa
- Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Jessica Pascolla
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Fonseca EM, Vicente MC, Fournier S, Kinkead R, Bícego KC, Gargaglioni LH. Influence of light/dark cycle and orexins on breathing control in green iguanas (Iguana iguana). Sci Rep 2020; 10:22105. [PMID: 33328521 PMCID: PMC7744544 DOI: 10.1038/s41598-020-79107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Light/dark cycle affects the physiology of vertebrates and hypothalamic orexin neurons (ORX) are involved in this function. The breathing pattern of the green iguana changes from continuous to episodic across the light/dark phases. Since the stimulatory actions of ORX on breathing are most important during arousal, we hypothesized that ORX regulates changes of breathing pattern in iguanas. Thus, we: (1) Localized ORX neurons with immunohistochemistry; (2) Quantified cyclic changes in plasma orexin-A levels by ELISA; (3) Compared breathing pattern at rest and during hypoxia and hypercarbia; (4) Evaluated the participation of the ORX receptors in ventilation with intracerebroventricular microinjections of ORX antagonists during light and dark phases. We show that the ORX neurons of I. iguana are located in the periventricular hypothalamic nucleus. Orexin-A peaks during the light/active phase and breathing parallels these cyclic changes: ventilation is higher during the light phase than during the dark phase. However, inactivation of ORX-receptors does not affect the breathing pattern. Iguanas increase ventilation during hypoxia only during the light phase. Conversely, CO2 promotes post-hypercarbic hyperpnea during both phases. We conclude that ORXs potentiate the post-hypercarbic (but not the hypoxic)-drive to breathe and are not involved in light/dark changes in the breathing pattern.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Stephanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
3
|
Prada-Dacasa P, Urpi A, Sánchez-Benito L, Bianchi P, Quintana A. Measuring Breathing Patterns in Mice Using Whole-body Plethysmography. Bio Protoc 2020; 10:e3741. [PMID: 33659401 DOI: 10.21769/bioprotoc.3741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/02/2022] Open
Abstract
Respiratory dysfunction is among the main cause of severe and fatal pathologies worldwide. The use of effective experimental models and methodologies for the study of the pulmonary pathophysiology is necessary to prevent, control and cure these diseases. Plethysmography, a technique for the assessment of lung function, has been widely applied in mice for the characterization of respiratory physiology. However, classical plethysmography methods present technical limitations such as the use of anesthesia and animal immobilization. Whole-body plethysmography (WBP) avoids these issues providing a non-invasive approach for the assessment of the respiratory function in conscious animals. WBP relies on the recording of pressure changes that are produced by the spontaneous breathing activity of an animal placed inside an airtight chamber. During normal respiration, pressure variation is directly proportional to the respiratory pattern of the animal allowing the measurement of the respiratory rate and tidal volume. These parameters are commonly used to evaluate pulmonary function in different physiological and disease models. In contrast to classical plethysmography methods, WBP technique allows reproducible serial measurements as it avoids animal restraint or the use of anesthesia. These key features rend WBP a suitable approach for longitudinal studies allowing the assessment of progressive respiratory alterations in physiological and pathological conditions. This protocol describes the procedures for the measurement of the breathing patterns in mice using the WBP method, the data analysis and results interpretation.
Collapse
Affiliation(s)
- Patricia Prada-Dacasa
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Sánchez-Benito
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Quintana
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Receno CN, Eassa BE, Cunningham CM, DeRuisseau LR. Young and middle-aged mouse breathing behavior during the light and dark cycles. Physiol Rep 2020; 7:e14060. [PMID: 31004390 PMCID: PMC6474843 DOI: 10.14814/phy2.14060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestrained barometric plethysmography is a common method used for characterizing breathing patterns in small animals. One source of variation between unrestrained barometric plethysmography studies is the segment of baseline. Baseline may be analyzed as a predetermined time‐point, or using tailored segments when each animal is visually calm. We compared a quiet, minimally active (no sniffing/grooming) breathing segment to a predetermined time‐point at 1 h for baseline measurements in young and middle‐aged mice during the dark and light cycles. Additionally, we evaluated the magnitude of change for gas challenges based on these two baseline segments. C57BL/6JEiJ x C3Sn.BliA‐Pde6b+/DnJ male mice underwent unrestrained barometric plethysmography with the following baselines used to determine breathing frequency, tidal volume (VT) and minute ventilation (VE): (1) 30‐sec of quiet breathing and (2) a 10‐min period from 50 to 60 min. Animals were also exposed to 10 min of hypoxic (10% O2, balanced N2), hypercapnic (5% CO2, balanced air) and hypoxic hypercapnic (10% O2, 5% CO2, balanced N2) gas. Both frequency and VE were higher during the predetermined 10‐min baseline versus the 30‐sec baseline, while VT was lower (P < 0.05). However, VE/VO2 was similar between the baseline time segments (P > 0.05) in an analysis of one cohort. During baseline, dark cycle testing had increased VT values versus those in the light (P < 0.05). For gas challenges, both frequency and VE showed higher percent change from the 30‐sec baseline compared to the predetermined 10‐min baseline (P < 0.05), while VT showed a greater change from the 10‐min baseline (P < 0.05). Dark cycle hypoxic exposure resulted in larger percent change in breathing frequency versus the light cycle (P < 0.05). Overall, light and dark cycle pattern of breathing differences emerged along with differences between the 30‐sec behavior observational method versus a predetermined time segment for baseline.
Collapse
Affiliation(s)
- Candace N Receno
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| | - Brianna E Eassa
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| | - Caitlin M Cunningham
- Department of Mathematics, Statistics and Computer Science, Le Moyne College, Syracuse, New York
| | - Lara R DeRuisseau
- Department of Biological Sciences, Le Moyne College, Syracuse, New York
| |
Collapse
|