1
|
Askew CD, Windsor M, Feka K, Russell FD, Schaumberg M, Walker MA, Neal B, Esterman A, Litewka L, Golledge J. Single-centre, double-blinded, randomised placebo-controlled trial to determine the effect of a 12-week home-based programme of footplate neuromuscular electrical stimulation on walking capacity in people with peripheral artery disease: a protocol for the Foot-PAD trial. BMJ Open 2025; 15:e093162. [PMID: 39863411 PMCID: PMC11784211 DOI: 10.1136/bmjopen-2024-093162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity. Preliminary trials in patients with PAD demonstrate that stimulation of the leg muscles using a footplate-NMES device can be performed without pain and may lead to significant gains in walking capacity. Studies, to date, have been small and have not been adequately controlled to account for any potential placebo effect. Therefore, the current trial will compare the effect of a 12-week programme of footplate-NMES with a placebo-control on walking capacity (6 min walking distance) and other secondary outcomes in patients with PAD. METHODS AND ANALYSIS The Foot-PAD trial is a double-blinded, randomised placebo-controlled trial to determine the effect of a 12-week home-based programme of footplate NMES on walking capacity in people with PAD. This is a single-centre trial with numerous recruitment locations. A total of 180 participants with stable PAD and intermittent claudication will be randomly assigned (1:1 ratio) to receive either footplate-NMES (intervention condition) or footplate-placebo (control condition) for two 30 min periods each day for 12 weeks. The footplate-NMES device will deliver stimulation sufficient to induce contraction of the leg muscles and repeated plantar and dorsiflexion at the ankles. The footplate-placebo device will deliver a momentary low-intensity transient stimulation that is insufficient to induce contraction of the leg muscles. Outcomes will be assessed at baseline (week 0), mid-intervention (week 6), postintervention (week 12) and 6 weeks after the completion of the intervention (week 18). The primary outcome is walking capacity at week 12, measured as maximum walking distance during the 6 min walk test. Secondary outcomes will include pain-free walking distance during the 6 min walk test; pain-free and maximum walking time during a graded treadmill walking test; disease-specific quality of life (Intermittent Claudication Questionnaire), self-reported walking impairment (Walking Impairment Questionnaire) and accelerometer-derived physical activity levels. Exploratory outcomes will include the Ankle-Brachial Index; leg vascular function; perception of device-use experience and symptom monitoring throughout the trial using the Claudication Symptom Instrument and a pain Visual Analogue Scale. ETHICS AND DISSEMINATION The Foot-PAD trial has received ethics approval from the Human Research Ethics Committees of Queensland Health Metro North Hospital and Health Service (78962) and the University of the Sunshine Coast (A21659). Regardless of the study outcomes, the study findings will be published in peer-reviewed scientific journals and presented at scientific meetings. TRIAL REGISTRATION NUMBER ACTRN12621001383853.
Collapse
Affiliation(s)
- Christopher David Askew
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Mark Windsor
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Krist Feka
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Hospital and Health Service, Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Fraser Donald Russell
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mia Schaumberg
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Meegan Anne Walker
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Bruce Neal
- University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Adrian Esterman
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Lucas Litewka
- Clinical Trials Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jonathan Golledge
- College of Medicine and Dentistry, James Cook University, Queensland Research Centre for Peripheral Vascular Disease, Townsville, Queensland, Australia
- Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Service, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Alvares TS, Maturana FM, Soares RN. Sex differences in the predictors of skeletal muscle microvascular reactivity in older individuals. Maturitas 2024; 189:108115. [PMID: 39276434 DOI: 10.1016/j.maturitas.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Aging is associated with an increased risk of cardiovascular disease and vascular dysfunction. Reduced nitric oxide bioavailability is considered one of the key mechanisms underlying vascular dysfunction in large arteries of older adults. However, the relationship between cardiovascular disease risk factors, nitric oxide bioavailability, and skeletal muscle microvascular reactivity, an early hallmark in cardiovascular disease progression, is unclear in older individuals. Also uncertain is whether this relationship is influenced by sex. Therefore, this study assessed the association between cardiovascular disease risk factors, circulating markers of nitric oxide availability (plasma nitrate and nitrite), and skeletal muscle microvascular reactivity in older individuals. First, we confirmed in a cohort of young and older individuals that aging is associated with skeletal muscle microvascular dysfunction. Next, we observed that skeletal muscle microvascular reactivity (P = 0.653; η2 = 0.016) and circulating nitric oxide metabolites (Nitrate: P = 0.641, η2 = 0.011; Nitrite: P = 0.560, η2 = 0.017; NOx: P = 0.639, η2 = 0.011) did not differ between older males and females. Finally, using multivariate regression models, we found that: (i) the number of cardiovascular risk factors was negatively associated with skeletal muscle microvascular reactivity in older males and females (B = -0.132, P = 0.044); (ii) the relationship between plasma nitrite and skeletal muscle microvascular reactivity was influenced by sex (F = 6.837, P = 0.016); and (iii) skeletal muscle microvascular reactivity in older females displayed a strong positive association with plasma nitrite (R2 = 0.720, P < 0.001). While the impact of cardiovascular disease risk factors on skeletal muscle microvascular reactivity was not influenced by sex, sex-related discrepancies were found in the relationship between nitric oxide bioavailability and skeletal muscle microvascular reactivity in older individuals.
Collapse
Affiliation(s)
- Thiago Silveira Alvares
- Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
3
|
Bird JD, Lance ML, Banser TRW, Thrall SF, Cotton PD, Lindner JR, Eves ND, Dominelli PB, Foster GE. Quantifying Diaphragm Blood Flow With Contrast-Enhanced Ultrasound in Humans. Chest 2024; 166:821-834. [PMID: 38821183 PMCID: PMC11492223 DOI: 10.1016/j.chest.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Despite the known interplay between blood flow and function, to our knowledge, there is currently no minimally invasive method to monitor diaphragm hemodynamics. We used contrast-enhanced ultrasound to quantify relative diaphragm blood flow (Q˙DIA) in humans and assessed the technique's efficacy and reliability during graded inspiratory pressure threshold loading. We hypothesized that: (1) Q˙DIA would linearly increase with pressure generation, and (2) that there would be good test-retest reliability and interanalyzer reproducibility. RESEARCH QUESTION Can we validate what is, to our knowledge, the first minimally invasive method to measure relative diaphragm blood flow in humans? STUDY DESIGN AND METHODS Quantitative contrast-enhanced ultrasound of the costal diaphragm was performed in healthy participants (10 male participants, 6 female participants; mean age 28 ± 5 years; BMI 22.8 ± 2.0 kg/m) during unloaded breathing and three stages of loaded breathing on two separate days. Gastric and esophageal balloon catheters measured transdiaphragmatic pressure. Ultrasonography was performed during a constant-rate IV infusion of lipid-stabilized microbubbles following each stage. Ultrasound images were acquired after a destruction-replenishment sequence and diaphragm specific time-intensity data were used to determine Q˙DIA by two individuals. RESULTS Transdiaphragmatic pressure for unloaded and each loading stage were 15.2 ± 0.8, 26.1 ± 0.8, 34.6 ± 0.8, and 40.0 ± 0.8 percentage of the maximum, respectively. Q˙DIA increased with each stage of loading (3.1 ± 3.1, 6.9 ± 3.6, 11.0 ± 4.9, and 13.5 ± 5.4 acoustic units/s; P < .0001). The linear relationship between diaphragmatic flow and pressure was reproducible from day to day. Q˙DIA had good to excellent test-retest reliability (0.86 [0.77, 0.92]; P < .0001) and excellent interanalyzer reproducibility (0.93 [0.90, 0.95]; P < .0001) with minimal bias. INTERPRETATION Relative Q˙DIA measurements had valid physiological underpinnings, were reliable day-to-day, and were reproducible analyzer-to-analyzer. This study indicated that contrast-enhanced ultrasound is a viable, minimally invasive method for assessing costal Q˙DIA in humans and may provide a tool to monitor diaphragm hemodynamics in clinical settings.
Collapse
Affiliation(s)
- Jordan D Bird
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Megan L Lance
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Ty R W Banser
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Scott F Thrall
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Paul D Cotton
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan R Lindner
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Paolo B Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.
| |
Collapse
|
4
|
Menêses A, Krastins D, Nam M, Bailey T, Quah J, Sankhla V, Lam J, Jha P, Schulze K, O'Donnell J, Magee R, Golledge J, Greaves K, Askew CD. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization. J Endovasc Ther 2024; 31:115-125. [PMID: 35898156 DOI: 10.1177/15266028221114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Leg muscle microvascular blood flow (perfusion) is impaired in response to maximal exercise in patients with peripheral artery disease (PAD); however, during submaximal exercise, microvascular perfusion is maintained due to a greater increase in microvascular blood volume compared with that seen in healthy adults. It is unclear whether this submaximal exercise response reflects a microvascular impairment, or whether it is a compensatory response for the limited conduit artery flow in PAD. Therefore, to clarify the role of conduit artery blood flow, we compared whole-limb blood flow and skeletal muscle microvascular perfusion responses with exercise in patients with PAD (n=9; 60±7 years) prior to, and following, lower-limb endovascular revascularization. MATERIALS AND METHODS Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after a 5 minute bout of submaximal intermittent isometric plantar-flexion exercise using contrast-enhanced ultrasound imaging. Exercise contraction-by-contraction whole-leg blood flow and vascular conductance were measured using strain-gauge plethysmography. RESULTS With revascularization there was a significant increase in whole-leg blood flow and conductance during exercise (p<0.05). Exercise-induced muscle microvascular perfusion response did not change with revascularization (pre-revascularization: 3.19±2.32; post-revascularization: 3.89±1.67 aU.s-1; p=0.38). However, the parameters that determine microvascular perfusion changed, with a reduction in the microvascular volume response to exercise (pre-revascularization: 6.76±3.56; post-revascularization: 2.42±0.69 aU; p<0.01) and an increase in microvascular flow velocity (pre-revascularization: 0.25±0.13; post-revascularization: 0.59±0.25 s-1; p=0.02). CONCLUSION These findings suggest that patients with PAD compensate for the conduit artery blood flow impairment with an increase in microvascular blood volume to maintain muscle perfusion during submaximal exercise. CLINICAL IMPACT The findings from this study support the notion that the impairment in conduit artery blood flow in patients with PAD leads to compensatory changes in microvascular blood volume and flow velocity to maintain muscle microvascular perfusion during submaximal leg exercise. Moreover, this study demonstrates that these microvascular changes are reversed and become normalized with successful lower-limb endovascular revascularization.
Collapse
Affiliation(s)
- Annelise Menêses
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Digby Krastins
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom Bailey
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity & Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jing Quah
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Vaibhav Sankhla
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jeng Lam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Pankaj Jha
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Karl Schulze
- Sunshine Vascular Clinic, Buderim, QLD, Australia
| | - Jill O'Donnell
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Rebecca Magee
- Department of Vascular Surgery, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University and Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Kim Greaves
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
5
|
Monteiro Rodrigues L, Rocha C, Andrade S, Granja T, Gregório J. The acute adaptation of skin microcirculatory perfusion in vivo does not involve a local response but rather a centrally mediated adaptive reflex. Front Physiol 2023; 14:1177583. [PMID: 37215174 PMCID: PMC10192746 DOI: 10.3389/fphys.2023.1177583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Cardiovascular homeostasis involves the interaction of multiple players to ensure a permanent adaptation to each organ's needs. Our previous research suggested that changes in skin microcirculation-even if slight and distal-always evoke an immediate global rather than "local" response affecting hemodynamic homeostasis. These observations question our understanding of known reflexes used to explore vascular physiology, such as reactive hyperemia and the venoarteriolar reflex (VAR). Thus, our study was designed to further explore these responses in older healthy adults of both sexes and to potentially provide objective evidence of a centrally mediated mechanism governing each of these adaptive processes. Methods: Participants (n = 22, 52.5 ± 6.2 years old) of both sexes were previously selected. Perfusion was recorded in both feet by laser Doppler flowmetry (LDF) and photoplethysmography (PPG). Two different maneuvers with opposite impacts on perfusion were applied as challengers to single limb reactive hyperemia evoked by massage and a single leg pending to generate a VAR. Measurements were taken at baseline (Phase I), during challenge (Phase II), and recovery (Phase III). A 95% confidence level was adopted. As proof of concept, six additional young healthy women were selected to provide video imaging by using optoacoustic tomography (OAT) of suprasystolic post-occlusive reactive hyperemia (PORH) in the upper limb. Results: Modified perfusion was detected by LDF and PPG in both limbs with both hyperemia and VAR, with clear systemic hemodynamic changes in all participants. Comparison with data obtained under the same conditions in a younger cohort, previously published by our group, revealed that results were not statistically different between the groups. Discussion: The OAT documentary and analysis showed that the suprasystolic pressure in the arm changed vasomotion in the forearm, displacing blood from the superficial to the deeper plexus vessels. Deflation allowed the blood to return and to be distributed in both plexuses. These responses were present in all individuals independent of their age. They appeared to be determined by the need to re-establish hemodynamics acutely modified by the challenger, which means that they were centrally mediated. Therefore, a new mechanistic interpretation of these exploratory maneuvers is required to better characterize in vivo cardiovascular physiology in humans.
Collapse
|
6
|
Chen SY, Wang YW, Chen WS, Hsiao MY. Update of Contrast-enhanced Ultrasound in Musculoskeletal Medicine: Clinical Perspectives - A Review. J Med Ultrasound 2023; 31:92-100. [PMID: 37576422 PMCID: PMC10413398 DOI: 10.4103/jmu.jmu_94_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 08/15/2023] Open
Abstract
Contrast-enhanced ultrasound (CEUS) uses an intravascular contrast agent to enhance blood flow signals and assess microcirculation in different parts of the human body. Over the past decade, CEUS has become more widely applied in musculoskeletal (MSK) medicine, and the current review aims to systematically summarize current research on the application of CEUS in the MSK field, focusing on 67 articles published between January 2001 and June 2021 in online databases including PubMed, Scopus, and Embase. CEUS has been widely used for the clinical assessment of muscle microcirculation, tendinopathy, fracture nonunions, sports-related injuries, arthritis, peripheral nerves, and tumors, and can serve as an objective and quantitative evaluation tool for prognosis and outcome prediction. Optimal CEUS parameters and diagnostic cut off values for each disease category remain to be confirmed.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Yao-Wei Wang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Zulbaran‐Rojas A, Lee M, Bara RO, Flores‐Camargo A, Spitz G, Finco MG, Bagheri AB, Modi D, Shaib F, Najafi B. Electrical stimulation to regain lower extremity muscle perfusion and endurance in patients with post-acute sequelae of SARS CoV-2: A randomized controlled trial. Physiol Rep 2023; 11:e15636. [PMID: 36905161 PMCID: PMC10006649 DOI: 10.14814/phy2.15636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Muscle deconditioning and impaired vascular function in the lower extremities (LE) are among the long-term symptoms experienced by COVID-19 patients with a history of severe illness. These symptoms are part of the post-acute sequelae of Sars-CoV-2 (PASC) and currently lack evidence-based treatment. To investigate the efficacy of lower extremity electrical stimulation (E-Stim) in addressing PASC-related muscle deconditioning, we conducted a double-blinded randomized controlled trial. Eighteen (n = 18) patients with LE muscle deconditioning were randomly assigned to either the intervention (IG) or the control (CG) group, resulting in 36 LE being assessed. Both groups received daily 1 h E-Stim on both gastrocnemius muscles for 4 weeks, with the device functional in the IG and nonfunctional in the CG. Changes in plantar oxyhemoglobin (OxyHb) and gastrocnemius muscle endurance (GNMe) in response to 4 weeks of daily 1 h E-Stim were assessed. At each study visit, outcomes were measured at onset (t0 ), 60 min (t60 ), and 10 min after E-Stim therapy (t70 ) by recording ΔOxyHb with near-infrared spectroscopy. ΔGNMe was measured with surface electromyography at two time intervals: 0-5 min (Intv1 ) and: 55-60 min (Intv2 ). Baseline OxyHb decreased in both groups at t60 (IG: p = 0.046; CG: p = 0.026) and t70 (IG = p = 0.021; CG: p = 0.060) from t0 . At 4 weeks, the IG's OxyHb increased from t60 to t70 (p < 0.001), while the CG's decreased (p = 0.003). The IG had higher ΔOxyHb values than the CG at t70 (p = 0.004). Baseline GNMe did not increase in either group from Intv1 to Intv2 . At 4 weeks, the IG's GNMe increased (p = 0.031), whereas the CG did not change. There was a significant association between ΔOxyHb and ΔGNMe (r = 0.628, p = 0.003) at 4 weeks in the IG. In conclusion, E-Stim can improve muscle perfusion and muscle endurance in individuals with PASC experiencing LE muscle deconditioning.
Collapse
Affiliation(s)
- Alejandro Zulbaran‐Rojas
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Myeounggon Lee
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Rasha O. Bara
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Areli Flores‐Camargo
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Gil Spitz
- Baylor St Luke's Medical Center, Exercise PhysiologyLiver Transplant ProgramHoustonTexasUSA
| | - M. G. Finco
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Amir Behzad Bagheri
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Dipaben Modi
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Fidaa Shaib
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
8
|
Cohen JN, Kuikman MA, Politis-Barber V, Stairs BE, Coates AM, Millar PJ, Burr JF. Blood flow restriction and stimulated muscle contractions do not improve metabolic or vascular outcomes following glucose ingestion in young, active individuals. J Appl Physiol (1985) 2022; 133:75-86. [DOI: 10.1152/japplphysiol.00178.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucose ingestion and absorption into the blood stream can challenge glycemic regulation and vascular endothelial function. Muscular contractions in exercise promote a return to homeostasis by increasing glucose uptake and blood flow. Similarly, muscle hypoxia supports glycemic regulation by increasing glucose oxidation. Blood flow restriction (BFR) induces muscle hypoxia during occlusion and reactive hyperemia upon release. Thus, in the absence of exercise, electric muscle stimulation (EMS) and BFR may offer circulatory and glucoregulatory improvements. In 13 healthy, active participants (27±3yr, 7 female) we tracked post-glucose (oral 100g) glycemic, cardiometabolic and vascular function measures over 120min following four interventions: 1) BFR, 2) EMS, 3) BFR+EMS or 4) Control. BFR was applied at 2min intervals for 30min (70% occlusion), EMS was continuous for 30min (maximum-tolerable intensity). Glycemic and insulinemic responses did not differ between interventions (partial η2=0.11-0.15, P=0.2); however, only BFR+EMS demonstrated cyclic effects on oxygen consumption, carbohydrate oxidation, muscle oxygenation, heart rate, and blood pressure (all P<0.01). Endothelial function was reduced 60min post-glucose ingestion across interventions and recovered by 120min (5.9±2.6% vs 8.4±2.7%; P<0.001). Estimated microvascular function was not meaningfully different. Leg blood flow increased during EMS and BFR+EMS (+656±519mL•min-1, +433±510mL•min-1; P<0.001); however, only remained elevated following BFR intervention 90min post-glucose (+94±94mL•min-1; P=0.02). Superimposition of EMS onto cyclic BFR did not preferentially improve post-glucose metabolic or vascular function amongst young, active participants. Cyclic BFR increased blood flow delivery 60min beyond intervention, and BFR+EMS selectively increased carbohydrate usage and reduced muscle oxygenation warranting future clinical assessments.
Collapse
Affiliation(s)
- Jeremy N. Cohen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Megan A. Kuikman
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Valerie Politis-Barber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Brienne E. Stairs
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Alexandra M. Coates
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F. Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Meneses AL, Nam MCY, Bailey TG, Anstey C, Golledge J, Keske MA, Greaves K, Askew CD. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age. Physiol Rep 2021; 8:e14580. [PMID: 33038050 PMCID: PMC7547535 DOI: 10.14814/phy2.14580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Impairments in skeletal muscle microvascular function are frequently reported in patients with various cardiometabolic conditions for which older age is a risk factor. Whether aging per se predisposes the skeletal muscle to microvascular dysfunction is unclear. We used contrast‐enhanced ultrasound (CEU) to compare skeletal muscle microvascular perfusion responses to cuff occlusion and leg exercise between healthy young (n = 12, 26 ± 3 years) and older (n = 12, 68 ± 7 years) adults. Test–retest reliability of CEU perfusion parameters was also assessed. Microvascular perfusion (microvascular volume × flow velocity) of the medial gastrocnemius muscle was measured before and immediately after: (a) 5‐min of thigh‐cuff occlusion, and (b) 5‐min of submaximal intermittent isometric plantar‐flexion exercise (400 N) using CEU. Whole‐leg blood flow was measured using strain‐gauge plethysmography. Repeated measures were obtained with a 15‐min interval, and averaged responses were used for comparisons between age groups. There were no differences in post‐occlusion whole‐leg blood flow and muscle microvascular perfusion between young and older participants (p > .05). Similarly, total whole‐leg blood flow during exercise and post‐exercise peak muscle microvascular perfusion did not differ between groups (p > .05). The overall level of agreement between the test–retest measures of calf muscle perfusion was excellent for measurements taken at rest (intraclass correlation coefficient [ICC] 0.85), and in response to cuff occlusion (ICC 0.89) and exercise (ICC 0.95). Our findings suggest that healthy aging does not affect muscle perfusion responses to cuff‐occlusion and submaximal leg exercise. CEU muscle perfusion parameters measured in response to these provocation tests are highly reproducible in both young and older adults.
Collapse
Affiliation(s)
- Annelise L Meneses
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Michael C Y Nam
- Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Chris Anstey
- Department of Intensive Care, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Michelle A Keske
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| |
Collapse
|
10
|
Young GM, Krastins D, Chang D, Lam J, Quah J, Stanton T, Russell F, Greaves K, Kriel Y, Askew CD. The Association Between Contrast-Enhanced Ultrasound and Near-Infrared Spectroscopy-Derived Measures of Calf Muscle Microvascular Responsiveness in Older Adults. Heart Lung Circ 2021; 30:1726-1733. [PMID: 34384703 DOI: 10.1016/j.hlc.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIM Contrast-enhanced ultrasound (CEUS) measures of post-occlusion skeletal muscle microvascular responsiveness demonstrate the microvascular dysfunction associated with ageing and age-related disease. However, the accessibility of CEUS is limited by the need for intravenous administration of ultrasound contrast agents and sophisticated imaging analysis. Alternative methods are required for the broader assessment of microvascular dysfunction in research and clinical settings. Therefore, we aimed to evaluate the level of association and agreement between CEUS and near-infrared spectroscopy (NIRS)-derived measures of post-occlusion skeletal muscle microvascular responsiveness in older adults. METHODS During supine rest, participants (n=15, 67±11 years) underwent 5 minutes of thigh cuff-occlusion (200 mmHg). Post-occlusion CEUS measures of calf muscle microvascular responsiveness were made, including time to 95% peak acoustic intensity (TTP95 AI) and the rate of rise (slope AI). Simultaneous measures, including time to 95% peak oxygenated haemoglobin (TTP95 O2Hb) and slope O2Hb, were made using continuous-wave NIRS in the same muscle region. RESULTS There were strong correlations between TTP95 measures derived from CEUS and NIRS (r=0.834, p=<0.001) and the corresponding measures of slope (r=0.735, p=0.004). The limits of agreement demonstrated by Bland Altman plot analyses for CEUS and NIRS-derived measures of TTP95 (-9.67-1.98 s) and slope (-1.29-5.23%. s-1) were smaller than the minimum differences expected in people with microvascular dysfunction. CONCLUSIONS The strong correlations and level of agreement in the present study support the use of NIRS as a non-invasive, portable and cost-effective method for assessing post-occlusion skeletal muscle microvascular responsiveness in older adults.
Collapse
Affiliation(s)
- Grace M Young
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia; Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Digby Krastins
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia; Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - David Chang
- Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Jeng Lam
- Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Jing Quah
- Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Tony Stanton
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia; Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Fraser Russell
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Kim Greaves
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia; Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia
| | - Yuri Kriel
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Christopher D Askew
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, Qld, Australia; Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia; Department of Cardiac Services, Sunshine Coast Hospital and Health Service, Caloundra, Qld, Australia.
| |
Collapse
|