1
|
Huang PJ, Arif Y, Rempe MP, Son JJ, John JA, McDonald KM, Petro NM, Garrison GM, Okelberry HJ, Kress KA, Picci G, Wilson TW. High-definition transcranial direct-current stimulation of left primary motor cortices modulates beta and gamma oscillations serving motor control. J Physiol 2025; 603:1627-1644. [PMID: 40009440 DOI: 10.1113/jp287085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Recent studies have linked non-invasive transcranial direct-current stimulation (tDCS) with altered neural processing near the site of stimulation and across a distributed network of brain regions, with some evidence for a possible therapeutic role. However, negative results also exist and the potential impacts on motor-related neural oscillations have rarely been studied. Herein, we applied high-definition tDCS to the left primary motor cortex of 62 healthy adults in three sessions (anodal, cathodal and sham). Participants then performed a motor task with two conditions (i.e. cognitive interference and no interference) during magnetoencephalography (MEG). The MEG data were imaged in the time-frequency domain and whole-brain, voxel-wise maps were probed for task condition and stimulation effects. Our results indicated the classic pattern of slower behavioural responses and stronger neural oscillations in frontal and parietal cortices during interference relative to no-interference trials. Importantly, we found task condition-by-stimulation interactions involving motor-related gamma oscillations, with weaker interference effects after cathodal stimulation relative to anodal and sham in the right prefrontal, left temporoparietal junction and left cerebellar cortices. Conversely, stronger gamma interference responses were found in the right motor and superior parietal cortices following anodal relative to cathodal and sham. Lastly, main effects of stimulation indicated stronger beta oscillations following anodal stimulation in the left supplementary motor area. Taken together, these data provide key mechanistic insight into the polarity-specific effects of tDCS on the neural oscillatory dynamics serving motor control. Such findings reflect the modulatory effects of tDCS on population-level neural oscillatory responses distant from the stimulation site. KEY POINTS: Neurophysiological studies have indicated that beta and gamma oscillations are critical to motor control and that their dynamics are modulated by higher-order features of the task. Recent investigations have shown that transcranial direct-current stimulation (tDCS) affects neural activity both locally and in brain regions distant from the stimulation site, but the mechanisms remain poorly understood. Sixty-two adults underwent anodal, cathodal and sham high-definition tDCS of the left motor cortices and completed a motor task with two levels of cognitive interference during magnetoencephalography (MEG). Task condition by stimulation-type interactions on movement-related gamma oscillations were observed across a distributed network of higher-order brain regions, including parietal cortices, right prefrontal and left temporoparietal junction. In sum, our results indicate polarity-specific effects on beta and gamma oscillations across a distributed network of brain regions that contribute to motor control in the context of interference and hold implications for understanding the therapeutic capacity of tDCS.
Collapse
Affiliation(s)
- Peihan J Huang
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grant M Garrison
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kennedy A Kress
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| |
Collapse
|
2
|
Tokikuni Y, Watanabe A, Nakazono H, Miura H, Saito R, Miaowen D, Fuyama K, Takahashi K, Okada K, Sugawara K, Tohyama H, Yoshida S, Fong KNK, Sawamura D. Differing effectiveness of transcranial random noise stimulation and transcranial direct current stimulation for enhancing working memory in healthy individuals: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:180. [PMID: 39402554 PMCID: PMC11472542 DOI: 10.1186/s12984-024-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (DLPFC) is a promising technique for enhancing working memory (WM) performance in healthy and psychiatric populations. However, limited information is available about the effectiveness of transcranial random noise stimulation (tRNS) applied to the left DLPFC on WM. This study investigated the effectiveness of tRNS on WM compared with that of tDCS, which has established functional evidence. METHODS This randomized, double-blind, sham-controlled trial enrolled 120 healthy right-handed adults who were randomly allocated to four stimulation groups: tRNS + direct current (DC) offset, tRNS, tDCS, or sham. Each stimulus was placed over the left DLPFC and had a current intensity of 2 mA applied for 20 min during the dual n-back task. The dual n-back task was repeated thrice: pre-stimulation, during stimulation, and post-stimulation. The d-prime scores, and response times were calculated as the main outcome measures. A linear mixed model was created to identify the main effects and interactions between the groups and times, with the group and time as fixed effects, and baseline performance and the subject as a covariate and random effect, respectively. The relationships between the benefit of each stimulus and baseline WM performance were also examined. RESULTS For the d-prime score during stimulation, the tRNS group significantly performed better than the sham group at online assessment (β = 0.310, p = 0.001). In the relationships between the benefit of each stimulus and baseline WM performance, the tRNS group had significantly larger negative line slopes than the sham group for the d-prime score (β = -0.233, p = 0.038). CONCLUSIONS tRNS applied to the left DLPFC significantly improved WM performance and generated greater benefits for healthy individuals with lower WM performance. These findings highlight the potential utility of tRNS for enhancing WM performance in individuals with lower WM performance and contribute evidence for clinical application to patients with cognitive decline. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry in Japan (UMIN000047365) on April 1, 2022; https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000054021 .
Collapse
Affiliation(s)
- Yukina Tokikuni
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Akihiro Watanabe
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, 814-0001, Japan
| | - Hiroshi Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Ryuji Saito
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Duan Miaowen
- Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kanako Fuyama
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Keita Takahashi
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, 060-8648, Japan
| | - Kazuhiro Sugawara
- Department of Physical Therapy, Sapporo Medical University, Sapporo, 060-8556, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan
| | - Susumu Yoshida
- Department of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu, 061- 0293, Japan
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Hokkaido, Japan.
| |
Collapse
|
3
|
Roshanzamir S, Rihani TSS, Dadarkhah A. Effects of transcranial direct current stimulation of the left primary motor cortex area on hand grip strength and dexterity in healthy individuals: A double-blind randomized sham-controlled trial. Neurophysiol Clin 2024; 54:102959. [PMID: 38552303 DOI: 10.1016/j.neucli.2024.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Motor function plays a critical role in everyday activities, from basic self-care tasks to complex activities that require precision and dexterity. This study was conducted to investigate the effects of transcranial direct current stimulation (tDCS) on grip strength and hand dexterity in healthy individuals. METHOD We conducted a double-blind randomized clinical trial with two groups of sham and active tDCS. The anode was fixed over the primary motor cortex area M1 on the C3 point. The primary outcome was hand grip strength measured by a dynamometer and the secondary outcomes were hand dexterity and assembly assessed by the Purdue Pegboard test. The tDCS program was administered at rest three and two times for the first and second week for a total of five sessions of 20 min each. RESULTS There was no significant improvement in the mean difference in grip strength between the sham (N = 27) and active (N = 27) tDCS groups (1.7 vs. 2.3, Mann-Whitney U test, P = 0.869, d = 0.02). Participants who received active tDCS showed subtle improvements in right-hand dexterity (0.6 vs. 1.3, U test P = 0.017, d = 0.33) and overall manual dexterity (1.4 vs. 3.2, U test P = 0.023, d = 0.31) compared with the sham group. Other comparisons for hand dexterity and assembly (motor coordination and fine skills during the manipulation of small objects) between the two groups were not significant. We did not find any adverse effects of sham or active tDCS. CONCLUSION Our study showed a potential for clinical improvement in hand dexterity after five sessions of tDCS in healthy individuals.
Collapse
Affiliation(s)
- Sharareh Roshanzamir
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Sadat Salehi Rihani
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Afsaneh Dadarkhah
- Clinical Biomechanics and Ergonomics Research Center, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Klees-Themens G, Théoret H. The effects of transcranial direct current stimulation on corticospinal excitability: A systematic review of nonsignificant findings. Eur J Neurosci 2023; 58:3074-3097. [PMID: 37407275 DOI: 10.1111/ejn.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.
Collapse
Affiliation(s)
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
5
|
Brancucci A, Rivolta D, Nitsche MA, Manippa V. The effects of transcranial random noise stimulation on motor function: A comprehensive review of the literature. Physiol Behav 2023; 261:114073. [PMID: 36608913 DOI: 10.1016/j.physbeh.2023.114073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
The present review considers all papers published on the topic up to the end of the year 2022. Transcranial random noise stimulation (tRNS) is a non-invasive neuromodulation technique introduced about 15 years ago whose use is becoming increasingly widespread in neuroscience. It consists of the application over the scalp of a weak, white noise-like current, through electrodes having a surface of several square centimetres, for a duration ranging from seconds to minutes. Despite its relatively low spatial and temporal resolution, tRNS has well defined effects on central motor excitability, which critically depend on stimulation parameters. These effects seem to be chiefly based on an effect on neuronal membrane sodium channels and can last much longer than the stimulation itself. While the effects at the cellular level in the motor cortex are becoming progressively clear, much more studies are needed to understand the effects of tRNS on motor behaviour and performance, where initial research results are nevertheless promising, in both basic and applied research.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Scienze Motorie, Umane e della Salute, Università di Roma "Foro Italico", Italy.
| | - Davide Rivolta
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Valerio Manippa
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli studi di Bari "Aldo Moro", Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
6
|
Transcranial random noise stimulation over the left dorsolateral prefrontal cortex attenuates pain expectation and perception. Clin Neurophysiol 2023; 147:1-10. [PMID: 36608385 DOI: 10.1016/j.clinph.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) has been increasingly used as a neuromodulatory target in pain management. Transcranial random noise stimulation (tRNS) was shown to effectively elevate cortical excitability. Hence, this study aimed to characterize how tRNS over the left DLPFC affects pain expectation and perception, as well as the efficacy of conditioned-pain modulation (CPM) that reflects the function of the endogenous pain-inhibitory pathway. METHODS Using a randomized, double-blinded, and sham-controlled design, healthy participants were randomly recruited to receive tRNS with a direct current offset or sham stimulation. Their expectations and perceptions of painful electrocutaneous stimuli, as well as CPM efficacy were assessed before, immediately after, and 30 min after tRNS. RESULTS Compared with sham stimulation, perceived-pain ratings to the painful stimuli, and expected-pain ratings before painful stimuli, attenuated immediately after tRNS, whereas this analgesic effect was ineffective 30 min after tRNS. Importantly, the immediate analgesia induced by tRNS could be accounted for by tRNS effect on attenuating expected-pain ratings before certain painful stimuli. However, CPM efficacy was not significantly affected by tRNS. CONCLUSIONS These results demonstrate analgesia immediately after applying tRNS over the left DLPFC. SIGNIFICANCE This study provides evidence for analgesia of DLPFC-tRNS on an experimental pain model.
Collapse
|
7
|
Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J Clin Neurosci 2022; 100:59-65. [DOI: 10.1016/j.jocn.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
8
|
Brunelin J, Mondino M, Haesebaert J, Attal J, Benoit M, Chupin M, Dollfus S, El-Hage W, Galvao F, Jardri R, Llorca PM, Magaud L, Plaze M, Schott-Pethelaz AM, Suaud-Chagny MF, Szekely D, Fakra E, Poulet E. Examining transcranial random noise stimulation as an add-on treatment for persistent symptoms in schizophrenia (STIM'Zo): a study protocol for a multicentre, double-blind, randomized sham-controlled clinical trial. Trials 2021; 22:964. [PMID: 34963486 PMCID: PMC8715588 DOI: 10.1186/s13063-021-05928-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background One out of three patients with schizophrenia failed to respond adequately to antipsychotics and continue to experience debilitating symptoms such as auditory hallucinations and negative symptoms. The development of additional therapeutic approaches for these persistent symptoms constitutes a major goal for patients. Here, we develop a randomized-controlled trial testing the efficacy of high-frequency transcranial random noise stimulation (hf-tRNS) for the treatment of resistant/persistent symptoms of schizophrenia in patients with various profiles of symptoms, cognitive deficits and illness duration. We also aim to investigate the biological and cognitive effects of hf-tRNS and to identify the predictors of clinical response. Methods In a randomized, double-blind, 2-arm parallel-group, controlled, multicentre study, 144 patients with schizophrenia and persistent symptoms despite the prescription of at least one antipsychotic treatment will be randomly allocated to receive either active (n = 72) or sham (n = 72) hf-tRNS. hf-tRNS (100–500 Hz) will be delivered for 20 min with a current intensity of 2 mA and a 1-mA offset twice a day on 5 consecutive weekdays. The anode will be placed over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Patients’ symptoms will be assessed prior to hf-tRNS (baseline), after the 10 sessions, and at 1-, 3- and 6-month follow-up. The primary outcome will be the number of responders defined as a reduction of at least 25% from the baseline scores on the Positive and Negative Syndrome Scale (PANSS) after the 10 sessions. Secondary outcomes will include brain activity and connectivity, source monitoring performances, social cognition, other clinical (including auditory hallucinations) and biological variables, and attitude toward treatment. Discussion The results of this trial will constitute a first step toward establishing the usefulness of hf-tRNS in schizophrenia whatever the stage of the illness and the level of treatment resistance. We hypothesize a long-lasting effect of active hf-tRNS on the severity of schizophrenia symptoms as compared to sham. This trial will also have implications for the use of hf-tRNS as a preventive intervention of relapse in patients with schizophrenia. Trial registration ClinicalTrials.gov NCT02744989. Prospectively registered on 20 April 2016
Collapse
Affiliation(s)
- Jerome Brunelin
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France. .,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France. .,Lyon 1 University, F-69000, Villeurbanne, France. .,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.
| | - Marine Mondino
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | - Julie Haesebaert
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | - Marie Chupin
- Paris Brain Institute - Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France.,CATI Multicenter Neuroimaging Platform, F-75000, Paris, France
| | | | - Wissam El-Hage
- CHRU de Tours, CIC 1415, INSERM, Tours; UMR 1253, iBrain, Université de Tours, INSERM, F-37044, Tours, France
| | - Filipe Galvao
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France
| | - Renaud Jardri
- University in Lille, INSERM U1172, CHU Lille, Lille Neuroscience & Cognition Research Centre, Plasticity & SubjectivitY (PSY) team, CURE Platform, Lille, France
| | | | - Laurent Magaud
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France
| | - Marion Plaze
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, F-75014, Paris, France.,Université de Paris, F-75005, Paris, France
| | - Anne Marie Schott-Pethelaz
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Marie-Françoise Suaud-Chagny
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | | | - Eric Fakra
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,CHU de Saint Etienne, F-42000, Saint Etienne, France
| | - Emmanuel Poulet
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,Psychiatric emergency service, Hospices civils de Lyon, F-69005, Lyon, France
| |
Collapse
|