1
|
Michel JM, Godwin JS, Kerr NR, Childs TE, Booth FW, Mobley CB, Hughes DC, Roberts MD. Skeletal muscle atrophy induced by aging and disuse atrophy are strongly associated with the upregulation of the endoplasmic stress protein CHOP in rats. Mol Biol Rep 2025; 52:322. [PMID: 40100290 PMCID: PMC11919930 DOI: 10.1007/s11033-025-10415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND While canonical anabolic and proteolytic pathways have been well examined in the context of skeletal muscle proteostasis, the roles of endoplasmic reticulum stress (ERS) and the induced unfolded protein response (UPR) are underappreciated. Thus, we aimed to determine whether aging and/or disuse atrophy in rats altered skeletal muscle ERS/UPR markers. METHODS AND RESULTS Soleus (SOL) and plantaris (PLT) muscles of 3-month-old (mo), 6 mo, 12 mo, 18 mo, and 24 mo rats (9-10 per group, 48 in total) were analyzed for UPR proteins with further analysis performed on the protein CHOP. The gastrocnemius muscles of 4 mo rats that had undergone hindlimb immobilization (HLI, n = 12) or sham casting (CTL, n = 12) were analyzed for similar targets as well as more extensive CHOP-related targets. CHOP protein was greater in the PLT and SOL of 18 and 24 mo rats versus other age groups (P < 0.05). Moreover, negative correlations existed between CHOP expression and normalized PLT (R=-0.702, P < 0.001) and SOL (R=-0.658, P < 0.001) muscle weights in all rats analyzed at different ages. CHOP protein expression was also greater in the gastrocnemius of HLI versus CTL rats (P < 0.001), and a negative correlation existed between CHOP protein expression and normalized muscle weights in these rats (R=-0.814, P < 0.001). Nuclear CHOP protein levels (P < 0.010) and genes transcriptionally regulated by CHOP were also greater in HLI versus CTL rats (P < 0.001) implicating transcriptional activity of CHOP is elevated during disuse atrophy. CONCLUSIONS CHOP is operative during aging- and disuse-induced skeletal muscle atrophy in rodents, and more research is needed to determine if CHOP is a key mechanistic driver of these processes.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA.
- School of Kinesiology Director, Nutrabolt Applied and Molecular Physiology Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| |
Collapse
|
2
|
Sklivas AB, Hettinger ZR, Rose S, Mantuano A, Confides AL, Rigsby S, Peelor FF, Miller BF, Butterfield TA, Dupont-Versteegden EE. Responses of skeletal muscle to mechanical stimuli in female rats following and during muscle disuse atrophy. J Appl Physiol (1985) 2025; 138:652-665. [PMID: 39884317 DOI: 10.1152/japplphysiol.00802.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with disuse in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without mechanotherapy or reambulation (RA) with mechanotherapy (RAM) (study 1), or to WB, HS for 7 days, with HS mechanotherapy (HSM) or without mechanotherapy (study 2) to gastrocnemius muscle. Muscle fiber cross-sectional area (CSA) and fiber type, collagen, satellite cell number, and protein synthesis (ksyn) and degradation (kdeg) were assessed. Study 1: muscle weight, but not CSA, was higher in RAM compared with HS, but CSA was higher in RA compared with HS. Myofibrillar ksyn was higher in RA and RAM compared to WB and HS but not different between RA and RAM. Myofibrillar kdeg was lower with mechanotherapy compared to HS. Study 2: muscle weight, CSA, and myofibrillar ksyn and kdeg were not different with mechanotherapy. Collagen content was lower with mechanotherapy but collagen ksyn was not. Mechanotherapy was not associated with changes in fiber type, satellite cell, or myonuclear number in either study. Compared to males, female rats had less muscle loss with HS, which was associated with less loss of myofibrillar ksyn. Recovery from atrophy was associated with higher ksyn in female and lower kdeg in male rats. Female rat muscles do not exhibit a growth response to mechanotherapy with disuse or reambulation. Furthermore, male and female rats show distinct responses to different mechanical stimuli.NEW & NOTEWORTHY This study investigates the response of female rats to mechanical stimulation in both active and passive forms following and during muscle disuse atrophy. New findings indicate that female rats respond to active loading with enhanced muscle regrowth and protein synthesis, whereas passive loading using mechanotherapy did not affect atrophy or recovery of female muscles. Comparison with published data indicates that there are distinct differences in male and female rats in their response to mechanical stimuli.
Collapse
MESH Headings
- Animals
- Female
- Rats
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/pathology
- Hindlimb Suspension/physiology
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/pathology
- Rats, Inbred F344
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Weight-Bearing/physiology
- Collagen/metabolism
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Physical Stimulation/methods
Collapse
Affiliation(s)
- Alexander B Sklivas
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Zachary R Hettinger
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Sarah Rose
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Alessandra Mantuano
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Amy L Confides
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Sandra Rigsby
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, Oklahoma, United States
| | - Timothy A Butterfield
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Department Athletic Training and Clinical Nutrition, College Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Esther E Dupont-Versteegden
- Department Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Appell C, Jiwan NC, Shen CL, Luk HY. Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model. Curr Issues Mol Biol 2024; 46:12497-12511. [PMID: 39590336 PMCID: PMC11592774 DOI: 10.3390/cimb46110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation.
Collapse
Affiliation(s)
- Casey Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| | - Nigel C. Jiwan
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
- Department of Kinesiology, Hope College, Holland, MI 49423, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.A.); (N.C.J.)
| |
Collapse
|
4
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
5
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
6
|
Oliveira AN, Memme JM, Wong J, Hood DA. Dimorphic effect of TFE3 in determining mitochondrial and lysosomal content in muscle following denervation. Skelet Muscle 2024; 14:7. [PMID: 38643162 PMCID: PMC11031958 DOI: 10.1186/s13395-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Muscle atrophy is a common consequence of the loss of innervation and is accompanied by mitochondrial dysfunction. Mitophagy is the adaptive process through which damaged mitochondria are removed via the lysosomes, which are regulated in part by the transcription factor TFE3. The role of lysosomes and TFE3 are poorly understood in muscle atrophy, and the effect of biological sex is widely underreported. METHODS Wild-type (WT) mice, along with mice lacking TFE3 (KO), a transcriptional regulator of lysosomal and autophagy-related genes, were subjected to unilateral sciatic nerve denervation for up to 7 days, while the contralateral limb was sham-operated and served as an internal control. A subset of animals was treated with colchicine to capture mitophagy flux. RESULTS WT females exhibited elevated oxygen consumption rates during active respiratory states compared to males, however this was blunted in the absence of TFE3. Females exhibited higher mitophagy flux rates and greater lysosomal content basally compared to males that was independent of TFE3 expression. Following denervation, female mice exhibited less muscle atrophy compared to male counterparts. Intriguingly, this sex-dependent muscle sparing was lost in the absence of TFE3. Denervation resulted in 45% and 27% losses of mitochondrial content in WT and KO males respectively, however females were completely protected against this decline. Decreases in mitochondrial function were more severe in WT females compared to males following denervation, as ROS emission was 2.4-fold higher. In response to denervation, LC3-II mitophagy flux was reduced by 44% in females, likely contributing to the maintenance of mitochondrial content and elevated ROS emission, however this response was dysregulated in the absence of TFE3. While both males and females exhibited increased lysosomal content following denervation, this response was augmented in females in a TFE3-dependent manner. CONCLUSIONS Females have higher lysosomal content and mitophagy flux basally compared to males, likely contributing to the improved mitochondrial phenotype. Denervation-induced mitochondrial adaptations were sexually dimorphic, as females preferentially preserve content at the expense of function, while males display a tendency to maintain mitochondrial function. Our data illustrate that TFE3 is vital for the sex-dependent differences in mitochondrial function, and in determining the denervation-induced atrophy phenotype.
Collapse
Affiliation(s)
- Ashley N Oliveira
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Jonathan M Memme
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Jenna Wong
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
7
|
Lin H, Xing J, Pan H, Hirabayashi T, Maeshige N, Nakanishi R, Kondo H, Fujino H. Niacin supplementation attenuates the regression of three-dimensional capillary architecture in unloaded female rat skeletal muscle. Physiol Rep 2024; 12:e16019. [PMID: 38627220 PMCID: PMC11021194 DOI: 10.14814/phy2.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.
Collapse
Affiliation(s)
- Hao Lin
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Jihao Xing
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Han Pan
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Takumi Hirabayashi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Noriaki Maeshige
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Ryosuke Nakanishi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Hiroyo Kondo
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Hidemi Fujino
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| |
Collapse
|
8
|
Issertine M, Rosa‐Calwell ME, Sung D, Bouxsein ML, Rutkove SB, Mortreux M. Adaptation to full weight-bearing following disuse in rats: The impact of biological sex on musculoskeletal recovery. Physiol Rep 2024; 12:e15938. [PMID: 38383049 PMCID: PMC10881285 DOI: 10.14814/phy2.15938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/23/2024] Open
Abstract
With the technological advances made to expand space exploration, astronauts will spend extended amounts of time in space before returning to Earth. This situation of unloading and reloading influences human physiology, and readaptation to full weight-bearing may significantly impact astronauts' health. On Earth, similar situations can be observed in patients who are bedridden or suffer from sport-related injuries. However, our knowledge of male physiology far exceeds our knowledge of female's, which creates an important gap that needs to be addressed to understand the sex-based differences regarding musculoskeletal adaptation to unloading and reloading, necessary to preserve health of both sexes. Using a ground-based model of total unloading for 14 days and reloading at full weight-bearing for 7 days rats, we aimed to compare the musculoskeletal adaptations between males and females. Our results reveal the existence of significant differences. Indeed, males experienced bone loss both during the unloading and the reloading period while females did not. During simulated microgravity, males and females showed comparable muscle deconditioning with a significant decline in rear paw grip strength. However, after 7 days of recovery, muscle strength improved. Additionally, sex-based differences in myofiber size existing at baseline are significantly reduced or eliminated following unloading and recovery.
Collapse
Affiliation(s)
- Margot Issertine
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Megan E. Rosa‐Calwell
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Dong‐Min Sung
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Mary L. Bouxsein
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Orthopedic SurgeryBeth Israel Deaconess Medical Center, Center for Advanced Orthopaedic StudiesBostonMassachusettsUSA
| | - Seward B. Rutkove
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Marie Mortreux
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of NutritionUniversity of Rhode IslandKingstonRhode IslandUSA
| |
Collapse
|
9
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Sex differences in muscle health in simulated micro- and partial-gravity environments in rats. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:319-328. [PMID: 38314043 PMCID: PMC10831389 DOI: 10.1016/j.smhs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 02/06/2024] Open
Abstract
Skeletal muscle size and strength are important for overall health for astronauts. However, how male and female muscle may respond differently to micro- and partial-gravity environments is not fully understood. The purpose of this study was to determine how biological sex and sex steroid hormones influence the progression of muscle atrophy after long term exposure to micro and partial gravity environments in male and female rats. Male and female Fisher rats (n = 120) underwent either castration/ovariectomy or sham surgeries. After two weeks recovery, animals were divided into microgravity (0g), partial-gravity (40% of weight bearing, 0.4g), or full weight bearing (1g) interventions for 28 days. Measurements of muscle size and strength were evaluated prior to and after interventions. At 0g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle size compared to males; castration/ovariectomy did not influence these differences. Additionally, at 0.4g, females lost more dorsiflexion strength, plantar flexion strength, and other metrics of muscle strength compared to males; castration/ovariectomy did not influence these differences. Females have greater musculoskeletal aberrations during exposure to both microgravity and partial-gravity environments; these differences are not dependent on the presence of sex steroid hormones. Correspondingly, additional interventions may be necessary to mitigate musculoskeletal loss in female astronauts to protect occupational and overall health.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Womenʼs Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Tsitkanou S, Morena da Silva F, Cabrera AR, Schrems ER, Murach KA, Washington TA, Rosa-Caldwell ME, Greene NP. Biological sex divergence in transcriptomic profiles during the onset of hindlimb unloading-induced atrophy. Am J Physiol Cell Physiol 2023; 325:C1276-C1293. [PMID: 37746697 PMCID: PMC10861149 DOI: 10.1152/ajpcell.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
12
|
Sharlo KA, Lvova ID, Tyganov SA, Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. The Effect of SERCA Activation on Functional Characteristics and Signaling of Rat Soleus Muscle upon 7 Days of Unloading. Biomolecules 2023; 13:1354. [PMID: 37759754 PMCID: PMC10526198 DOI: 10.3390/biom13091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Skeletal muscle abnormalities and atrophy during unloading are accompanied by the accumulation of excess calcium in the sarcoplasm. We hypothesized that calcium accumulation may occur, among other mechanisms, due to the inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity. Consequently, the use of the SERCA activator will reduce the level of calcium in the sarcoplasm and prevent the negative consequences of muscle unloading. Wistar rats were randomly assigned into one of three groups (eight rats per group): control rats with placebo (C), 7 days of unloading/hindlimb suspension with placebo (7HS), and 7 days of unloading treated with SERCA activator CDN1163 (7HSC). After seven days of unloading the soleus muscle, the 7HS group displayed increased fatigue in the ex vivo test, a significant increase in the level of calcium-dependent CaMK II phosphorylation and the level of tropomyosin oxidation, as well as a decrease in the content of mitochondrial DNA and protein, slow-type myosin mRNA, and the percentage of slow-type muscle fibers. All of these changes were prevented in the 7HSC group. Moreover, treatment with CDN1163 blocked a decrease in the phosphorylation of p70S6k, an increase in eEF2 phosphorylation, and an increase in MuRF-1 mRNA expression. Nevertheless, there were no differences in the degree of fast and slow muscle fiber atrophy between the 7HS and 7HSC groups. Conclusion: SERCA activation during 7 days of unloading prevented an increase in soleus fatigue, the decrease of slow-type myosin, mitochondrial markers, and markers of calcium homeostasis but had no effect on muscle atrophy.
Collapse
Affiliation(s)
- Kristina A. Sharlo
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Irina D. Lvova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Ksenia A. Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Svetlana P. Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Tatiana Y. Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN 46202, USA;
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| | - Tatiana L. Nemirovskaya
- Myology Laboratory, Institute of Biomedical Problems, RAS (Russian Academy of Sciences), Moscow 123007, Russia; (K.A.S.); (I.D.L.); (S.A.T.); (K.A.Z.); (S.P.B.); (B.S.S.)
| |
Collapse
|
13
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985) 2023; 134:1438-1449. [PMID: 37102698 PMCID: PMC10228673 DOI: 10.1152/japplphysiol.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
15
|
Drzymała-Celichowska H, Celichowski J, Bączyk M, Krutki P. The electrophysiological properties of hindlimb motoneurons do not differ between male and female rats. Eur J Neurosci 2022; 56:4176-4186. [PMID: 35727198 PMCID: PMC9540861 DOI: 10.1111/ejn.15745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Several studies have reported differences in the morphological characteristics of motoneurons and the contractile properties of motor units of male and female rats. However, differences in spinal motoneuron activity between the sexes are not well understood. This study investigates the electrophysiological properties of spinal α- motoneurons in male and female Wistar rats under pentobarbital anesthesia. Fast and slow types of tibial motoneurons were recorded intracellularly in 15 male and 15 female rats, and the measured parameters were compared statistically using 2-way ANOVA and Tukey post-hoc tests. The membrane properties, action potential parameters and firing characteristics were not different between sexes, though significant differences were observed in the properties of fast and slow motoneuron types within both sex groups. We conclude that the sex-related differences observed in motor performance between male and female rats are largely due to differences in muscle mass, the proportion of muscle fibre types and the related motor unit contractile properties, while the mechanisms of motor control dependent on the electrophysiological activity of motoneurons are similar between the sexes. These findings are significant, as they indicate that results of experiments investigating electrophysiological properties can be reliably compared between sexes.
Collapse
Affiliation(s)
- Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznan University of Physical Education, Poland.,Department of Physiology and Biochemistry, Poznan University of Physical Education, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - Marcin Bączyk
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - Piotr Krutki
- Department of Neurobiology, Poznan University of Physical Education, Poland
| |
Collapse
|