1
|
Althammer F, Roy RK, Kirchner MK, Lira EC, Schimmer S, Charlet A, Grinevich V, Stern JE. Impaired oxytocin signalling in the central amygdala in rats with chronic heart failure. J Physiol 2024; 602:6259-6280. [PMID: 39530490 PMCID: PMC11576253 DOI: 10.1113/jp286297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Heart failure (HF) patients suffer from cognitive decline and mood impairments, but the molecular signals and brain circuits underlying these effects remain elusive. The hypothalamic neuropeptide oxytocin (OT) is critically involved in regulating mood, and OTergic signalling in the central amygdala (CeA) is a key mechanism that controls emotional responses including anxiety-like behaviours. Still, whether an altered OTergic signalling contributes to mood disorders in HF remains unknown. To address this, we used an ischaemic rat HF model, along with a highly multidisciplinary approach, to mechanistically study multiple levels of the hypothalamus-to-CeA OTergic circuit in male rats with HF. We aimed to test the hypothesis that sustained activation of the OT system following an infarct leads to depletion of OT content in this pathway, with subsequent changes in OT receptor expression and blunted modulation of local GABAergic circuits. We found that most of OTergic innervation of the CeA originated from the supraoptic nucleus (SON). While no differences in the numbers of SON→CeA OTergic neurons was observed between sham and HF rats, we observed a blunted content and release of OT from axonal terminals within the CeA. Moreover, we report downregulation of neuronal and astrocytic OT receptors, and impaired OTR-driven GABAergic synaptic activity within the CeA microcircuit of HF rats. We provide the first evidence that male HF rats display perturbations in the hypothalamus-to-amygdala OTergic circuit, laying the foundation for future translational studies targeting either the OT system or GABAergic amygdalar microcircuit to ameliorate mood impairments in rats or patients with chronic HF. KEY POINTS: Heart failure patients suffer from cognitive decline, depression and mood impairments, but the underlying mechanisms remain elusive. Acting within the central amygdala, the neuropeptide oxytocin regulates emotional responses, including anxiety-like behaviours. However, whether changes in oxytocin signalling occurs during heart failure is unknown. In this study, we used an ischaemic rat heart failure model to mechanistically study multiple levels of the hypothalamus-to-amygdala oxytocinergic circuit in this disease. We report an overall blunted oxytocinergic signalling pathway in rats with heart failure, including blunted content and release of oxytocin from axonal terminals, downregulation of neuronal and astrocytic oxytocin receptors, and impaired oxytocin-driven GABAergic synaptic activity within the central amygdala microcircuit of HF rats. These studies shed light on mechanisms that contribute to mood disorders in cardiovascular disease states and help to identify potential molecular targets for their improved treatment.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Elba Campos Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Stephanie Schimmer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique and University of Strasbourg, Institute of Cellular and Integrative Neuroscience, Strasbourg, France
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
2
|
Silver R, Yao Y, Roy RK, Stern JE. Parallel trajectories in the discovery of the SCN-OVLT and pituitary portal pathways: Legacies of Geoffrey Harris. J Neuroendocrinol 2023; 35:e13245. [PMID: 36880566 PMCID: PMC10423749 DOI: 10.1111/jne.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.
Collapse
Affiliation(s)
- Rae Silver
- Department of Neuroscience, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
- Department of Psychology, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
| | - Yifan Yao
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
3
|
Korogod SM, Stern JE, Cymbalyuk GS. Microgeometrical dendritic factors predict electrical decoupling between somatic and dendritic compartments in magnocellular neurosecretory neurons. Front Cell Neurosci 2023; 17:1125029. [PMID: 37032839 PMCID: PMC10081025 DOI: 10.3389/fncel.2023.1125029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
It is generally assumed that dendritic release of neuropeptides from magnocellular neurosecretory neurons (MNNs), a critical process involved in homeostatic functions, is an activity-dependent process that requires backpropagating action potentials (APs). Still, growing evidence indicates that dendritic release can occur in the absence of APs, and axonal APs have been shown to fail to evoke dendritic release. These inconsistencies strongly suggest that APs in MNNs may fail to backpropagating into dendrites. Here we tested whether simple factors of electrical signal attenuation could lead to effective decoupling between cell's body and dendritic release site within typical geometrical characteristics of MNN. We developed a family of linear mathematical models of MNNs and evaluated whether the somato-dendritic transfer of electrical signals is influenced by the geometrical characteristics. We determined the prerequisites for critically strong dendritic attenuation of the somatic input which are sufficient to explain the failure of APs initiated in the soma to backpropagating into dendritic compartments. Being measured in 100 μm from soma voltage attenuations down to 0.1 and 0.01 of the input value were chosen as the markers of electrical decoupling of dendritic sites from the soma, considering 0.1 insufficient for triggering dendritic spikes and 0.01 indistinguishable from background noise. The tested micro-geometrical factors were the dendritic stem diameter, varicosities, and size of peri-dendritic space limited by glial sheath wrapping. Varicosities increased the attenuation along homogeneous proximal dendrites by providing an increased current leak at the junction with the proximal dendritic section. The glial sheath wrapping a dendrite section promoted greater attenuation by increasing longitudinal resistance of the interstitial peri-dendritic space thus playing the insulating role. These decoupling effects were strengthened in the case of the dendritic stems with thinner diameters of and/or increased conductivity of the membrane. These micro-geometrical factors are biophysically realistic and predict electrical decoupling between somatic and dendritic compartments in MNNs.
Collapse
Affiliation(s)
- Sergiy M. Korogod
- The Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Department of Molecular Biophysics, O. O. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Javier E. Stern
- The Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Gennady S. Cymbalyuk
- The Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
4
|
Urocortin-3 neurons in the perifornical area are critical mediators of chronic stress on female infant-directed behavior. Mol Psychiatry 2023; 28:483-496. [PMID: 36476733 PMCID: PMC9847478 DOI: 10.1038/s41380-022-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Infant avoidance and aggression are promoted by activation of the Urocortin-3 expressing neurons of the perifornical area of hypothalamus (PeFAUcn3) in male and female mice. PeFAUcn3 neurons have been implicated in stress, and stress is known to reduce maternal behavior. We asked how chronic restraint stress (CRS) affects infant-directed behavior in virgin and lactating females and what role PeFAUcn3 neurons play in this process. Here we show that infant-directed behavior increases activity in the PeFAUcn3 neurons in virgin and lactating females. Chemogenetic inhibition of PeFAUcn3 neurons facilitates pup retrieval in virgin females. CRS reduces pup retrieval in virgin females and increases activity of PeFAUcn3 neurons, while CRS does not affect maternal behavior in lactating females. Inhibition of PeFAUcn3 neurons blocks stress-induced deficits in pup-directed behavior in virgin females. Together, these data illustrate the critical role for PeFAUcn3 neuronal activity in mediating the impact of chronic stress on female infant-directed behavior.
Collapse
|