1
|
Mosoane B, McCabe M, Jackson BS, Dlamini Z. CD44 Variant Expression in Follicular Cell-Derived Thyroid Cancers: Implications for Overcoming Multidrug Resistance. Molecules 2025; 30:1899. [PMID: 40363706 PMCID: PMC12073131 DOI: 10.3390/molecules30091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Thyroid cancer (TC) is a significant global health issue that exhibits notable heterogeneity in incidence and outcomes. In low-resource settings such as Africa, delayed diagnosis and limited healthcare access exacerbate mortality rates. Among follicular cell-derived thyroid cancers-including papillary (PTC), follicular (FTC), anaplastic (ATC), and poorly differentiated (PDTC) subtypes-the role of CD44 variants has emerged as a critical factor influencing tumor progression and multidrug resistance (MDR). CD44, a transmembrane glycoprotein, and its splice variants (CD44v) mediate cell adhesion, migration, and survival, contributing to cancer stem cell (CSC) maintenance and therapy resistance. Differential expression patterns of CD44 isoforms across TC subtypes have shown diagnostic, prognostic, and therapeutic implications. Specifically, CD44v6 expression in PTC has been correlated with metastasis and aggressive tumor behavior, while in FTC, its expression aids in distinguishing malignant from benign lesions. Furthermore, CD44 contributes to MDR through enhanced drug efflux via ABC transporters, apoptosis evasion, and CSC maintenance via the Wnt/β-catenin and PI3K/Akt pathways. Targeted therapies against CD44 such as monoclonal antibodies, hyaluronic acid-based nanocarriers, and gene-editing technologies hold promise in overcoming MDR. However, despite the mounting evidence supporting CD44-targeted strategies in various cancers, research on this therapeutic potential in TC remains limited. This review synthesizes existing knowledge on CD44 variant expression in follicular cell-derived thyroid cancers and highlights potential therapeutic strategies to mitigate MDR, particularly in high-burden regions, thereby improving patient outcomes and survival.
Collapse
Affiliation(s)
- Benny Mosoane
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Michelle McCabe
- Department of Anatomical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Brandon S. Jackson
- Breast and Endocrine Unit, Department of General Surgery, University of Pretoria, Kalafong Provincial Tertiary Hospital, Pretoria 0001, South Africa;
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
2
|
da Silva DD, Araldi RP, Belizario MR, Rocha WG, Maciel RMDB, Cerutti JM. DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines. Int J Mol Sci 2024; 25:11924. [PMID: 39595993 PMCID: PMC11594232 DOI: 10.3390/ijms252211924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1- cells (those lacking DLK1 expression). These findings underscore DLK1's role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Danilo Dias da Silva
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Mariana Rocha Belizario
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Welbert Gomes Rocha
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Disciplina de Endocrinologia e Metabologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| |
Collapse
|
3
|
Ghiandai V, Grassi ES, Gazzano G, Fugazzola L, Persani L. Characterization of EpCAM in thyroid cancer biology by three-dimensional spheroids in vitro model. Cancer Cell Int 2024; 24:196. [PMID: 38835027 DOI: 10.1186/s12935-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.
Collapse
Affiliation(s)
- Viola Ghiandai
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gazzano
- Pathology Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Wisztorski M, Aboulouard S, Roussel L, Duhamel M, Saudemont P, Cardon T, Narducci F, Robin YM, Lemaire AS, Bertin D, Hajjaji N, Kobeissy F, Leblanc E, Fournier I, Salzet M. Fallopian tube lesions as potential precursors of early ovarian cancer: a comprehensive proteomic analysis. Cell Death Dis 2023; 14:644. [PMID: 37775701 PMCID: PMC10541450 DOI: 10.1038/s41419-023-06165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Ovarian cancer is the leading cause of death from gynecologic cancer worldwide. High-grade serous carcinoma (HGSC) is the most common and deadliest subtype of ovarian cancer. While the origin of ovarian tumors is still debated, it has been suggested that HGSC originates from cells in the fallopian tube epithelium (FTE), specifically the epithelial cells in the region of the tubal-peritoneal junction. Three main lesions, p53 signatures, STILs, and STICs, have been defined based on the immunohistochemistry (IHC) pattern of p53 and Ki67 markers and the architectural alterations of the cells, using the Sectioning and Extensively Examining the Fimbriated End Protocol. In this study, we performed an in-depth proteomic analysis of these pre-neoplastic epithelial lesions guided by mass spectrometry imaging and IHC. We evaluated specific markers related to each preneoplastic lesion. The study identified specific lesion markers, such as CAVIN1, Emilin2, and FBLN5. We also used SpiderMass technology to perform a lipidomic analysis and identified the specific presence of specific lipids signature including dietary Fatty acids precursors in lesions. Our study provides new insights into the molecular mechanisms underlying the progression of ovarian cancer and confirms the fimbria origin of HGSC.
Collapse
Affiliation(s)
- Maxence Wisztorski
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Lucas Roussel
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Philippe Saudemont
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
| | - Fabrice Narducci
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Yves-Marie Robin
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Anne-Sophie Lemaire
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Delphine Bertin
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Nawale Hajjaji
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France
- Medical Oncology Department, Oscar Lambret Cancer Center, 59020, Lille, France
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), MorehouseSchool of Medicine, Atlanta, GA, 30310, USA
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Eric Leblanc
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Department of Gynecology Oncology, Oscar Lambret Cancer Center, 59020, Lille, France.
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75000, Paris, France.
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U-1192 - Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75000, Paris, France.
| |
Collapse
|
5
|
Characterization of metabolic reprogramming by metabolomics in the oncocytic thyroid cancer cell line XTC.UC1. Sci Rep 2023; 13:149. [PMID: 36599897 PMCID: PMC9813134 DOI: 10.1038/s41598-023-27461-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Oncocytic thyroid cancer is characterized by the aberrant accumulation of abnormal mitochondria in the cytoplasm and a defect in oxidative phosphorylation. We performed metabolomics analysis to compare metabolic reprogramming among the oncocytic and non-oncocytic thyroid cancer cell lines XTC.UC1 and TPC1, respectively, and a normal thyroid cell line Nthy-ori 3-1. We found that although XTC.UC1 cells exhibit higher glucose uptake than TPC1 cells, the glycolytic intermediates are not only utilized to generate end-products of glycolysis, but also diverted to branching pathways such as lipid metabolism and the serine synthesis pathway. Glutamine is preferentially used to produce glutathione to reduce oxidative stress in XTC.UC1 cells, rather than to generate α-ketoglutarate for anaplerotic flux into the TCA cycle. Thus, growth, survival and redox homeostasis of XTC.UC1 cells rely more on both glucose and glutamine than do TPC1 cells. Furthermore, XTC.UC1 cells contained higher amounts of intracellular amino acids which is due to higher expression of the amino acid transporter ASCT2 and enhanced autophagy, thus providing the building blocks for macromolecules and energy production. These metabolic alterations are required for oncocytic cancer cells to compensate their defective mitochondrial function and to alleviate excess oxidative stress.
Collapse
|
6
|
Gor R, Ramachandran I, Ramalingam S. Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals. Curr Top Med Chem 2022; 22:2589-2597. [PMID: 36380414 DOI: 10.2174/1567205020666221114112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| |
Collapse
|
7
|
Ni YL, Chien PJ, Hsieh HC, Shen HT, Lee HT, Chen SM, Chang WW. Disulfiram/Copper Suppresses Cancer Stem Cell Activity in Differentiated Thyroid Cancer Cells by Inhibiting BMI1 Expression. Int J Mol Sci 2022; 23:13276. [PMID: 36362068 PMCID: PMC9654490 DOI: 10.3390/ijms232113276] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Differentiated thyroid carcinomas (DTCs), which have papillary and follicular types, are common endocrine malignancies worldwide. Cancer stem cells (CSCs) are a particular type of cancer cells within bulk tumors involved in cancer initiation, drug resistance, and metastasis. Cells with high intracellular aldehyde hydrogenase (ALDH) activity are a population of CSCs in DTCs. Disulfiram (DSF), an ALDH inhibitor used for the treatment of alcoholism, reportedly targets CSCs in various cancers when combined with copper. This study reported for the first time that DSF/copper can inhibit the proliferation of papillary and follicular DTC lines. DSF/copper suppressed thyrosphere formation, indicating the inhibition of CSC activity. Molecular mechanisms of DSF/copper involved downregulating the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and cell cycle-related proteins, including cyclin B2, cyclin-dependent kinase (CDK) 2, and CDK4, in a dose-dependent manner. BMI1 overexpression diminished the inhibitory effect of DSF/copper in the thyrosphere formation of DTC cells. BMI1 knockdown by RNA interference in DTC cells also suppressed the self-renewal capability. DSF/copper could inhibit the nuclear localization and transcriptional activity of c-Myc and the binding of E2F1 to the BMI1 promoter. Overexpression of c-Myc or E2F1 further abolished the inhibitory effect of DSF/copper on BMI1 expression, suggesting that the suppression of c-Myc and E2F1 by DSF/copper was involved in the downregulation of BMI1 expression. In conclusion, DSF/copper targets CSCs in DTCs by inhibiting c-Myc- or E2F1-mediated BMI1 expression. Therefore, DSF is a potential therapeutic agent for future therapy in DTCs.
Collapse
Affiliation(s)
- Yung-Lun Ni
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Peng-Ju Chien
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Hung-Chia Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
| | - Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 427213, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy & Cell Biology, National Yang Ming Chiao Tung University, Taipei City 112304, Taiwan
| | - Shih-Ming Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, Providence University, Taichung City 433303, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402306, Taiwan
| |
Collapse
|
8
|
Yu HG, Bijian K, da Silva SD, Su J, Morand G, Spatz A, Alaoui-Jamali MA. NEDD9 links anaplastic thyroid cancer stemness to chromosomal instability through integrated centrosome asymmetry and DNA sensing regulation. Oncogene 2022; 41:2984-2999. [PMID: 35449243 DOI: 10.1038/s41388-022-02317-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/09/2022]
Abstract
Stemness and chromosomal instability (CIN) are two common contributors to intratumor heterogeneity and therapy relapse in advanced cancer, but their interplays are poorly defined. Here, in anaplastic thyroid cancer (ATC), we show that ALDH+ stem-like cancer cells possess increased CIN-tolerance owing to transcriptional upregulation of the scaffolding protein NEDD9. Thyroid patient tissues and transcriptomic data reveals NEDD9/ALDH1A3 to be co-expressed and co-upregulated in ATC. Compared to bulk ALDH- cells, ALDH+ cells were highly efficient at propagating CIN due to their intrinsic tolerance of both centrosome amplification and micronuclei. ALDH+ cells mitigated the fitness-impairing effects of centrosome amplification by partially inactivating supernumerary centrosomes. Meanwhile, ALDH+ cells also mitigated cell death caused by micronuclei-mediated type 1 interferon secretion by suppressing the expression of the DNA-sensor protein STING. Both mechanisms of CIN-tolerance were lost upon RNAi-mediated NEDD9 silencing. Both in vitro and in vivo, NEDD9-depletion attenuated stemness, CIN, cell/tumor growth, while enhancing paclitaxel effectiveness. Collectively, these findings reveal that ATC progression can involve an ALDH1A3/NEDD9-regulated program linking their stemness to CIN-tolerance that could be leveraged for ATC treatment.
Collapse
Affiliation(s)
- Henry G Yu
- Departments of Medicine, Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Krikor Bijian
- Departments of Medicine, Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Sabrina D da Silva
- Departments of Medicine, Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Jie Su
- Departments of Medicine, Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Gregoire Morand
- Departments of Medicine, Otolaryngology-Head and Neck Surgery, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Alan Spatz
- Departments of Medicine, Pathology, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Moulay A Alaoui-Jamali
- Departments of Medicine, Oncology, Lady Davis Institute for Medical Research and Segal Cancer Centre, the Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Jarboe T, Tuli NY, Chakraborty S, Maniyar RR, DeSouza N, Xiu-Min Li, Moscatello A, Geliebter J, Tiwari RK. Inflammatory Components of the Thyroid Cancer Microenvironment: An Avenue for Identification of Novel Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:1-31. [PMID: 34888842 DOI: 10.1007/978-3-030-83282-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incidence of thyroid cancer in the United States is on the rise with an appreciably high disease recurrence rate of 20-30%. Anaplastic thyroid cancer (ATC), although rare in occurrence, is an aggressive form of cancer with limited treatment options and bleak cure rates. This chapter uses discussions of in vitro models that are representative of papillary, anaplastic, and follicular thyroid cancer to evaluate the crosstalk between specific cells of the tumor microenvironment (TME), which serves as a highly heterogeneous realm of signaling cascades and metabolism that are associated with tumorigenesis. The cellular constituents of the TME carry out varying characteristic immunomodulatory functions that are discussed throughout this chapter. The aforementioned cell types include cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs), as well as specific immune cells, including natural killer (NK) cells, dendritic cells (DCs), mast cells, T regulatory (Treg) cells, CD8+ T cells, and tumor-associated macrophages (TAMs). TAM-mediated inflammation is associated with a poor prognosis of thyroid cancer, and the molecular basis of the cellular crosstalk between macrophages and thyroid cancer cells with respect to inducing a metastatic phenotype is not yet known. The dynamic nature of the physiological transition to pathological metastatic phenotypes when establishing the TME encompasses a wide range of characteristics that are further explored within this chapter, including the roles of somatic mutations and epigenetic alterations that drive the genetic heterogeneity of cancer cells, allowing for selective advantages that aid in their proliferation. Induction of these proliferating cells is typically accomplished through inflammatory induction, whereby chronic inflammation sets up a constant physiological state of inflammatory cell recruitment. The secretions of these inflammatory cells can alter the genetic makeup of proliferating cells, which can in turn, promote tumor growth.This chapter also presents an in-depth analysis of molecular interactions within the TME, including secretory cytokines and exosomes. Since the exosomal cargo of a cell is a reflection and fingerprint of the originating parental cells, the profiling of exosomal miRNA derived from thyroid cancer cells and macrophages in the TME may serve as an important step in biomarker discovery. Identification of a distinct set of tumor suppressive miRNAs downregulated in ATC-secreted exosomes indicates their role in the regulation of tumor suppressive genes that may increase the metastatic propensity of ATC. Additionally, the high expression of pro-inflammatory cytokines in studies looking at thyroid cancer and activated macrophage conditioned media suggests the existence of an inflammatory TME in thyroid cancer. New findings are suggestive of the presence of a metastatic niche in ATC tissues that is influenced by thyroid tumor microenvironment secretome-induced epithelial to mesenchymal transition (EMT), mediated by a reciprocal interaction between the pro-inflammatory M1 macrophages and the thyroid cancer cells. Thus, targeting the metastatic thyroid carcinoma microenvironment could offer potential therapeutic benefits and should be explored further in preclinical and translational models of human metastatic thyroid cancer.
Collapse
Affiliation(s)
- Tara Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanjukta Chakraborty
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Rachana R Maniyar
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole DeSouza
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
10
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
11
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
12
|
HER2-targeted antibody-drug conjugate induces host immunity against cancer stem cells. Cell Chem Biol 2021; 28:610-624.e5. [PMID: 33711257 DOI: 10.1016/j.chembiol.2021.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/15/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
We previously tested HER2-targeted antibody-drug conjugates (ADCs) in immunocompromised (SCID) mice, precluding evaluation of host immunity, impact on cancer stem cells (CSCs), and potential benefit when combined with PD-L1 blockade. In this study, we tested HER2-targeted ADC in two immunocompetent mouse tumor models. HER2-targeted ADC specifically inhibited the growth of HER2-expressing tumors, prolonged animal survival, and reduced HER2+ and PD-L1+ cells. ADC + anti-PD-L1 antibody augmented therapeutic efficacy, modulated immune gene signatures, increased the number and function of CD3+ and CD19+ tumor-infiltrating lymphocytes (TILs), induced tumor antigen-specific immunological memory, stimulated B cell activation, differentiation, and IgG1 production both systemically and in the tumor microenvironment. In addition, ADC therapy modulated T cell subsets and their activation in TILs. Furthermore, HER2-targeted ADC reduced the number and tumorigenicity of ALDHhi CSCs. This study demonstrates that HER2-targeted ADC effectively targets ALDHhi CSCs and this effect is augmented by co-administration of anti-PD-L1 antibody.
Collapse
|
13
|
Zhang L, Xu S, Cheng X, Zheng J, Wang Y, Wu J, Wang X, Wu L, Yu H, Bao J. Diallyl trisulphide, a H 2 S donor, compromises the stem cell phenotype and restores thyroid-specific gene expression in anaplastic thyroid carcinoma cells by targeting AKT-SOX2 axis. Phytother Res 2021; 35:3428-3443. [PMID: 33751676 DOI: 10.1002/ptr.7065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
It is widely accepted that anaplastic thyroid carcinoma (ATC), a rare, extremely aggressive malignant, is enriched by cancer stem cells (CSCs), which are closely related to the pathogenesis of ATC. In the present study, we demonstrated that diallyl trisulphide (DATS), a well-known hydrogen sulphide (H2 S) donor, suppressed sphere formation and restored the expression of iodide-metabolizing genes in human ATC cells, which were associated with H2 S generation. Two other H2 S donors, NaHS and GYY4137, could also suppress the self-renewal properties of ATC cells in vitro. Compared with normal thyroid tissues and papillary thyroid carcinomas (PTCs), the elevated expressions of SOX2 and MYC, two cancer stem cell markers, in ATCs were validated in the combined Gene Expression Omnibus (GEO) cohort. DATS decreased the expression of SOX2, which was mediated by H2 S generation. Furthermore, knockdown of AKT or inhibition of AKT by DATS led to a decrease of SOX2 expression in ATC cells. AKT knockdown phenocopied restoration of thyroid-specific gene expression in ATC cells. Our data suggest that H2 S donors treatment can compromise the stem cell phenotype and restore thyroid-specific gene expression of ATC cells by targeting AKT-SOX2 pathway, which may serve as a therapeutic strategy to intervene the CSC progression of ATC.
Collapse
Affiliation(s)
- Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China.,School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
14
|
Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg 2020; 7:43. [PMID: 32766274 PMCID: PMC7378741 DOI: 10.3389/fsurg.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy worldwide. Primary treatment with surgery and radioactive iodine is usually successful, however, there remains a small proportion of thyroid cancers that are resistant to these treatments, and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid culture systems have been used in thyroid cancer research. In vitro culture models have evolved from 2-dimensional thyrocyte monolayers into physiologically functional 3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer models to identify numerous genetic and epigenetic factors that are involved with tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and identify cancer stem cells within thyroid tumors. Objective of Review: The objective of this literature review is to summarize how thyroid in vitro culture models have evolved and highlight how in vitro models have been fundamental to thyroid cancer research. Type of Review: Systematic literature review. Search Strategy: The National Institute for Health and Care Excellence (NICE) Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE, Medline and PubMed databases. The following terms were included in the search: “in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until June 2019. A manual search of the references of review articles and other key articles was also performed using Google Scholar. Evaluation Method: All experimental studies and review articles that explicitly mentioned the use of in vitro models for thyroid cancer research in the title and/or abstract were considered. Full-text versions of all selected articles were evaluated. Experimental studies were reviewed and grouped according to topic: genetics/epigenetics, drug testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME). Results: Three thousand three hundred and seventy three articles were identified through database and manual searches. One thousand two hundred and sixteen articles remained after duplicates were removed. Five hundred and eighty nine articles were excluded based on title and/or abstract. Of the remaining 627 full-text articles: 24 were review articles, 332 related to genetic/epigenetics, 240 related to drug testing/treatments, and 31 related to SP/TME. Conclusion:In vitro cell culture models have been fundamental in thyroid cancer research. There have been many advances in culture techniques- developing complex cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic factors that have been identified using in vitro culture models can be used as targets for novel drug therapies. In the future, in vitro systems will facilitate personalized medicine, offering bespoke treatments to patients.
Collapse
Affiliation(s)
- Dylan Chew
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom
| | - Victoria Green
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Andrew Riley
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Richard James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom.,Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
15
|
Mussazhanova Z, Shimamura M, Kurashige T, Ito M, Nakashima M, Nagayama Y. Causative role for defective expression of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci 2020; 111:2814-2823. [PMID: 32458504 PMCID: PMC7419045 DOI: 10.1111/cas.14501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Oncocytic cell tumor of the thyroid is composed of large polygonal cells with eosinophilic cytoplasm that is rich in mitochondria. These tumors frequently have the mutations in mitochondrial DNA encoding the mitochondrial electron transport system complex I. However, the mechanism for accumulation of abnormal mitochondria is unknown. A noncanonical mitophagy system has recently been identified, and mitochondria-eating protein (MIEAP) plays a key role in this system. We therefore hypothesized that accumulation of abnormal mitochondria could be attributed to defective MIEAP expression in these tumors. We first show that MIEAP was expressed in all the conventional thyroid follicular adenomas (FAs)/adenomatous goiters (AGs) but not in oncocytic FAs/AGs; its expression was defective not only in oncocytic thyroid cancers but also in the majority of conventional thyroid cancers. Expression of MIEAP was not correlated with methylation status of the 5'-UTR of the gene. Our functional analysis showed that exogenously induced MIEAP, but not PARK2, reduced the amounts of abnormal mitochondria, as indicated by decreased reactive oxygen species levels, mitochondrial DNA / nuclear DNA ratios, and cytoplasmic acidification. Therefore, together with previous studies showing that impaired mitochondrial function triggers compensatory mitochondrial biogenesis that causes an increase in the amounts of mitochondria, we conclude that, in oncocytic cell tumors of the thyroid, increased abnormal mitochondria cannot be efficiently eliminated because of a loss of MIEAP expression, ie impaired MIEAP-mediated noncanonical mitophagy.
Collapse
Affiliation(s)
- Zhanna Mussazhanova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,High Medical School, Faculty of Medicine and Health Care, Al Farabi Kazakh National University, Almaty, Kazakhstan
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Masahiro Ito
- Department of Pathology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Oh EJ, Bychkov A, Cho H, Kim TM, Bae JS, Lim DJ, Jung CK. Prognostic Implications of CD10 and CD15 Expression in Papillary Thyroid Carcinoma. Cancers (Basel) 2020; 12:cancers12061413. [PMID: 32486143 PMCID: PMC7352591 DOI: 10.3390/cancers12061413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with papillary thyroid carcinoma (PTC) have excellent survival, but recurrence remains a major problem in the management of PTC. We aimed to determine the prognostic impact of the expression of CD10 and CD15 in patients with PTC. Immunohistochemistry for CD10 and CD15 was performed on the tissue microarrays of 515 patients with PTC. The expression of CD10 and CD15 was detected in 201 (39.0%) and 295 (57.3%) of 515 PTC cases, respectively, but not in the adjacent benign thyroid tissue. Recurrence was inversely correlated with CD15 expression (p = 0.034) but not with CD10 expression. In 467 PTC patients treated with radioiodine remnant ablation, the CD15 expression had an adjusted hazard ratio of 0.500 (p = 0.024) for recurrence-free survival and an adjusted odds ratio of 2.678 (p = 0.015) for predicting long-term excellent therapeutic response. CD10 expression was not associated with clinical outcomes. In the Cancer Genome Atlas dataset, the expression level of FUT4 (CD15) mRNA was higher in the low/intermediate-risk group for recurrence than in the high-risk group and exhibited positive correlation with SLC5A5 (NIS) mRNA expression (p = 0.003). Taken together, CD15 expression was identified as an independent prognostic marker for improved prognosis in PTC patients.
Collapse
Affiliation(s)
- Eun Ji Oh
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pathology, Green Cross Laboratories, Yongin-si, Gyeonggi-do 16924, Korea
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba 296-8602, Japan
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Haejin Cho
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Tae-Min Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Ja Seong Bae
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Dong-Jun Lim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
17
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
18
|
Lee S, Bae JS, Jung CK, Chung WY. Extensive lymphatic spread of papillary thyroid microcarcinoma is associated with an increase in expression of genes involved in epithelial-mesenchymal transition and cancer stem cell-like properties. Cancer Med 2019; 8:6528-6537. [PMID: 31498560 PMCID: PMC6825983 DOI: 10.1002/cam4.2544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 01/20/2023] Open
Abstract
Background Active surveillance is an alternative management for patents with low‐risk papillary thyroid microcarcinoma (PTMC); however, there is an absence of specific molecular markers that predict its progression. We compared gene expression patterns between PTMC with lateral neck‐node metastasis (N1b) and PTMC‐lacking nodal metastasis (N0). Methods We performed oligonucleotide microarray analysis in three PTMCs without cervical lymph‐node metastases (N0), and five PTMCs with lateral neck‐node metastasis (N1b) at initial diagnosis, using an Illumina HumanHT‐12 v4.0 Expression BeadChip. Quantitative real‐time PCR (qPCR) and western blot analysis confirmed microarray data. We performed immunohistochemistry (IHC) to confirm protein overexpression in samples from 20 N0 and 24 N1b PTMC patients who underwent thyroidectomy. Results Microarray analyses identified 52 probes corresponding to 45 genes. Expression of these genes differed significantly between the two PTMC groups. Forty genes were significantly upregulated and five genes were downregulated in N1b PTMC compared to N0. Four genes related to epithelial‐to‐mesenchymal transition (EMT) and stem cell markers, including ALDH1A3, TM4SF1, PROM1, and CAV1 were significantly upregulated in N1b PTMCs. Real‐time qPCR confirmed this expression and western blot analysis confirmed higher expression of ALDH1A3, TM4SF1, PROM1, and CAV1 in N1b than in N0 PTMCs. IHC indicated overexpression of ALDH1A3 and CAV1 in N1b compared to N0 PTMCs. Conclusions Genes related to EMT and thyroid cancer stem cell‐like properties are upregulated in early extensive lymphatic spread of PTMC.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ja Seong Bae
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Jung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Youn Chung
- Department of Surgery, Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
19
|
Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int J Mol Sci 2019; 20:E4413. [PMID: 31500315 PMCID: PMC6769504 DOI: 10.3390/ijms20184413] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
A hallmark of cancer is the ability of tumor cells to avoid immune destruction. Activated immune cells in tumor microenvironment (TME) secrete proinflammatory cytokines and chemokines which foster the proliferation of tumor cells. Specific antigens expressed by cancer cells are recognized by the main actors of immune response that are involved in their elimination (immunosurveillance). By the recruitment of immunosuppressive cells, decreasing the tumor immunogenicity, or through other immunosuppressive mechanisms, tumors can impair the host immune cells within the TME and escape their surveillance. Within the TME, cells of the innate (e.g., macrophages, mast cells, neutrophils) and the adaptive (e.g., lymphocytes) immune responses are interconnected with epithelial cancer cells, fibroblasts, and endothelial cells via cytokines, chemokines, and adipocytokines. The molecular pattern of cytokines and chemokines has a key role and could explain the involvement of the immune system in tumor initiation and progression. Thyroid cancer-related inflammation is an important target for diagnostic procedures and novel therapeutic strategies. Anticancer immunotherapy, especially immune checkpoint inhibitors, unleashes the immune system and activates cytotoxic lymphocytes to kill cancer cells. A better knowledge of the molecular and immunological characteristics of TME will allow novel and more effective immunotherapeutic strategies in advanced thyroid cancer.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Poupak Fallahi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Valeria Mazzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy; (M.R.G.); (G.V.); (G.M.)
- WAO Center of Excellence, 80138 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (I.R.); (G.E.); (F.R.); (S.R.P.); (A.P.); (V.M.)
| |
Collapse
|
20
|
Shiraiwa K, Matsuse M, Nakazawa Y, Ogi T, Suzuki K, Saenko V, Xu S, Umezawa K, Yamashita S, Tsukamoto K, Mitsutake N. JAK/STAT3 and NF-κB Signaling Pathways Regulate Cancer Stem-Cell Properties in Anaplastic Thyroid Cancer Cells. Thyroid 2019; 29:674-682. [PMID: 30784360 DOI: 10.1089/thy.2018.0212] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive and refractory cancers, and a therapy with a new concept needs to be developed. Recently, research on cancer stem cells (CSCs) has progressed, and CSCs have been suggested to be responsible for metastasis, recurrence, and therapy resistance. In ATC-CSCs, aldehyde dehydrogenase (ALDH) activity is the most reliable marker to enrich CSCs. However, it is just a marker and is not involved in CSC properties. The present study therefore aimed to identify key signaling pathways specific for ATC-CSCs. Methods: A small interfering RNA library targeting 719 kinases was used in a sphere formation assay and cell survival assay using ATC cell lines to select target molecules specific for CSC properties. The functions of the selected candidates were confirmed by sphere formation, cell survival, soft agar, and nude mice xenograft assays using small compound inhibitors. Results: The study focused on PDGFR, JAK, and PIM, whose small interfering RNAs had a higher inhibitory effect on sphere formation, as well as a lower or no effect on regular cell growth in both FRO and KTC3 cells. Next, inhibitors of PDGFR, JAK, STAT3, PIM and NF-κB were used, and all of them successfully suppressed sphere formation in a dose-dependent manner but not regular cell growth, confirming the screening results. Inhibition of the JAK/STAT3 and NF-κB pathways also reduced anchorage-independent growth in soft agar and tumor growth in nude mice. Conclusions: These results suggest that JAK/STAT3 and NF-κB signals play important roles in ATC-CSCs. Targeting these signaling pathways may be a promising approach to treat ATC.
Collapse
Affiliation(s)
- Ken Shiraiwa
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- 2 Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Michiko Matsuse
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Nakazawa
- 3 Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tomoo Ogi
- 3 Department of Genome Repair, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Keiji Suzuki
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Vladimir Saenko
- 4 Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shuhang Xu
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kazuo Umezawa
- 5 Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Shunichi Yamashita
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kazuhiro Tsukamoto
- 2 Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norisato Mitsutake
- 1 Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
21
|
Kim HM, Koo JS. Immunohistochemical Analysis of Cancer Stem Cell Marker Expression in Papillary Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:523. [PMID: 31428052 PMCID: PMC6688385 DOI: 10.3389/fendo.2019.00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cell (CSC) markers have prognostic significance in various cancers, but their clinical significance in papillary thyroid carcinoma (PTC) has not been demonstrated. In this study, CSC markers expressed in PTC and their relationships with prognosis were evaluated. We constructed tissue microarrays for 386 PTC cases, divided it into 42 low risk cases and 344 intermediate risk cases according to the American Thyroid Association 2009 Risk Stratification System. Immunohistochemical staining of CSC markers (CD15, CD24, CD44, CD166, and ALDH1A1) was performed, and the proportion of stained cells and immunostaining intensity were evaluated to determine positive marker expression. The relationships between CSC marker expression and other clinicopathological parameters or survival were analyzed. CD15 expression was higher in PTC with intermediate risk than in PTC with low risk (29.4 vs. 11.9%, p = 0.017). According to a multivariate analysis, CD15, CD44, CD166, and ALDH1A1 positivity were independently associated with a shorter progression-free survival (PFS) (odds ratio [OR]: 1.929, 2.960, 7.485, and 3.736; p = 0.016, p = 0.026, p < 0.001, and p = 0.006, respectively). Higher N and cancer stage were the only other clinical factors associated with a shorter PFS (OR: 2.953 and 1.898, p = 0.011 and p = 0.034). Overexpression of CSC markers in PTC was associated with shorter PFS during follow-up. Immunohistochemical staining of CSC markers may provide useful information for predicting patient outcomes.
Collapse
|
22
|
Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. Int J Mol Sci 2018; 19:ijms19102948. [PMID: 30262749 PMCID: PMC6213810 DOI: 10.3390/ijms19102948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), is characterized by a heterogeneous group of cells, including cancer stem cells (CSCs), crucially involved in tumor initiation, progression and recurrence. CSCs appear to have a distinct metabolic phenotype, compared to non-stem cancer cells. How they adapt their metabolism to the cancer process is still unclear, and no data are yet available for PTC. We recently isolated thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from PTC of the BRAF-like expression profile class, and stem-like cells from Nthy-ori3-1 normal thyreocyte-derived cell line. In the present study, gas chromatography/mass spectrometry metabolomic profiles of cancer thyrospheres were compared to cancer parental adherent cells and to non cancer thyrospheres profiles. A statistically significant decrease of glycolytic pathway metabolites and variations in Krebs cycle metabolites was found in thyrospheres versus parental cells. Moreover, cancer stem-like cells showed statistically significant differences in Krebs cycle intermediates, amino acids, cholesterol, and fatty acids content, compared to non-cancer stem-like cells. For the first time, data are reported on the metabolic profile of PTC cancer stem-like cells and confirm that changes in metabolic pathways can be explored as new biomarkers and targets for therapy in this tumor.
Collapse
|
23
|
Shimamura M, Yamamoto K, Kurashige T, Nagayama Y. Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines. Exp Cell Res 2018; 370:699-707. [PMID: 30053445 DOI: 10.1016/j.yexcr.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
Abstract
Cancer stem cells (CSCs), a small fraction of a tumor mass, are proposed to be highly crucial for cancer initiation, recurrence and metastasis. We have recently found that aldehyde dehydrogenase (ALDH) 1A3 is a CSC marker in some thyroid cancer cell lines, whose functional activity is, however, not relevant for thyroid cancer stemness. Since previous studies on malignancies in other organs suggest that intracellular reactive oxygen species (ROS) might be a functional and targetable CSC marker, the present study was conducted to elucidate the significance of ROS as a functional CSC marker in thyroid cancer cell lines. We first found that ROS levels controlled spherogenicity; that is, ROSlow cells were more spherogenic than ROShigh cells. However, unlike typical CSCs in other cancers, CSC-like ROSlow cells in thyroid cancer cells were plastic and were not accompanied by de-differentiation status (i.e., expression of stemness markers/thyroid-specific transcription factors) or chemo-/radio-resistance. The lower levels of ROS were functionally critical because a forced increase in ROS levels by L-buthionine-S,R-sulfoximine, an inhibitor of glutathione (GSH) synthesis, and irradiation suppressed spherogenicity. ROS levels were also correlated with the number of double strand DNA breaks determined by 53BP1 staining. Lower ROS levels appear to be a result of decreased mitochondrial oxidative phosphorylation and elevated GSH contents. Given the importance of CSC-targeted therapy for achieving long-term disease eradication by exhausting self-renewal and growth potential of cancer tissues, ROS may be a good candidate for CSC-targeted therapy in thyroid cancer.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
24
|
Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Cao W, Necochea-Campion RD, Yang H, Duerksen-Hughes P, Yuan X. Subpopulations of cancer stem cells found in papillary thyroid carcinoma. Exp Cell Res 2017; 362:515-524. [PMID: 29274322 DOI: 10.1016/j.yexcr.2017.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 01/16/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer and while it has a generally good prognosis, tumor recurrence remains a major clinical challenge. Studying laboratory cell lines as well as clinical specimens indicate that PTC may follow the cancer stem cell (CSC) model. However, CSC characteristics relevant in PTC initiation and progression remain largely unknown. Here we studied a population of sphere-growing tumor cells isolated from primary cultures of clinical PTC. These sphere-growing cells consisted of aldehyde dehydrogenase positive (ALDH+) and ALDH negative (ALDH-) cell subpopulations and demonstrated a hierarchical pattern of cell division. Using combinations of selective depletion, specific inhibition and cell sorting, we found that both subpopulations of the sphere cells were able to self-renew and initiate xenograft tumors independently, and fulfilled the definition of CSC. Importantly, when the subpopulations functioned together, the cancer-initiation efficiency and the xenograft tumor progression were significantly enhanced compared to either subpopulation alone. These data revealed crucial roles of ALDH- CSC in PTC biology and suggested that CSC subpopulations function cooperatively to control PTC initiation and progression. Together, our study indicates that CSC subpopulations isolated from clinical specimens offer unprecedented opportunities for investigating PTC pathogenesis and developing effective therapies.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A De Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Nathaniel R Peterson
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Wenlong Cao
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | | | - Hao Yang
- Shaanxi Spine Medicine Research Center, Hong Hui Hospital, Xi'an Jiaotong University, Shaanxi 710054, China
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiangpeng Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
25
|
Bozorg-Ghalati F, Hedayati M, Dianatpour M, Azizi F, Mosaffa N, Mehrabani D. Effects of a Phosphoinositide-3-Kinase Inhibitor on Anaplastic Thyroid Cancer Stem Cells. Asian Pac J Cancer Prev 2017; 18:2287-2291. [PMID: 28843268 PMCID: PMC5697493 DOI: 10.22034/apjcp.2017.18.8.2287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Thyroidectomy, radioactive iodine therapy, chemotherapy, or their combination are treatments of choice for thyroid cancers. However, cancer stem cells (CSCs) may become resistant to therapy, and mutations in somatic genes affect radioiodine uptake. This study determined the effect of a phosphoinositide-3-kinase (PI3K) inhibitor on anaplastic thyroid CSCs. Materials and Methods: The magnetic-activated cell sorting assay was used for segregating CD133-positive CSCs from three anaplastic thyroid carcinoma (ATC) cell lines (C643, SW1736, and 8305C). After confirming the cells’ purity by flow cytometry, they were treated with 5, 10, 20, or 25 μM LY294002, a PI3K inhibitor, and then evaluated at 24 and 48 h. The sodium-iodide symporter (NIS) mRNA level was determined using the quantitative real-time polymerase chain reaction. NIS protein expression was evaluated using western blotting. Results: The PI3K inhibitor, at different concentrations and times, increased the NIS mRNA level (1.30-6.17-fold, P < 0.0001). If the NIS mRNA level in LY294002-treated CD133-positive CSCs was increased more than 2-fold, the NIS protein content was detectable. Conclusions: CD133-positive CSCs isolated from ATC cell lines expressed NIS mRNA and protein after PI3K inhibition. Our findings suggest that molecularly targeted CSC therapy may improve the treatment efficacy of aggressive cancers like ATC.
Collapse
Affiliation(s)
- Farzaneh Bozorg-Ghalati
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. , dianatpour@sums.
ac.ir
| | | | | | | | | | | |
Collapse
|
26
|
Sha S, Zhai Y, Lin C, Wang H, Chang Q, Song S, Ren M, Liu G. A combination of valproic acid sodium salt, CHIR99021, E-616452, tranylcypromine, and 3-Deazaneplanocin A causes stem cell-like characteristics in cancer cells. Oncotarget 2017; 8:53302-53312. [PMID: 28881812 PMCID: PMC5581111 DOI: 10.18632/oncotarget.18396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies are based on the hypothesis that recurrence and drug resistance in lung carcinoma are due to a subpopulation of cancer stem-like cells (CSLCs) in solid tumors. Therefore it is crucial to screen for and recognize lung CSLCs. In this study, we stimulated non-small cell lung cancer (NSCLC) A549 cells to display stem cell-like characteristics using a combination of five small molecule compounds. The putative A549 stem cells activated an important CSLC marker, CD133 protein, as well multiple CSLC-related genes including ATP-binding cassette transporter G2 (ABCG2), C-X-C chemokine receptor type 4 (CXCR4), NESTIN, and BMI1. The A549 stem-like cells displayed resistance to the chemotherapeutic drugs etoposide and cisplatin, epithelial-to-mesenchymal transition properties, and increased protein expression levels of NOTCH1 and Hes Family bHLH Transcription Factor 1 (HES1). When A549 cells were pretreated with a NOTCH signaling pathway inhibitor before compound induction, expression of the NOTCH1 target gene HES1 was reduced. This demonstrated that the NOTCH signaling pathway in the putative A549 stem-like cells had been activated. Together, the results of our study showed that a combination of five small molecule agents could transform A549 cells into putative stem-like cells, and that these compounds could also elevate CD133 and ABCG2 protein expression levels in H460 cells. This study provides a convenient method for obtaining lung CSLCs, which may be an effective strategy for developing lung carcinoma treatments.
Collapse
Affiliation(s)
- Shuang Sha
- Tongji University School of Life Sciences and Technology, Shanghai, China.,Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yuanfen Zhai
- Department of Immunity, Tongji University School of Medicine, Shanghai, China
| | - Chengzhao Lin
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Heyong Wang
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shuang Song
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mingqiang Ren
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gentao Liu
- Center for Translational Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Center for Cancer Immunotherapy, Shanghai Biomed-Union Biotechnology Co. Ltd, Shanghai International Medical Zone, Shanghai, China
| |
Collapse
|
27
|
Zhu J, Wang S, Chen Y, Li X, Jiang Y, Yang X, Li Y, Wang X, Meng Y, Zhu M, Ma X, Huang C, Wu R, Xie C, Geng S, Wu J, Zhong C, Han H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J Nutr Biochem 2017; 44:80-91. [PMID: 28431267 DOI: 10.1016/j.jnutbio.2017.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/21/2017] [Accepted: 02/25/2017] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) play a central role in the development of cancer. The canonical Wnt/β-catenin pathway is critical for maintaining stemness of CSCs. Phytochemicals from dietary compounds possess anti-CSCs properties and have been characterized as promising therapeutic agents for the prevention and treatment of many cancers. To date, the involvement and function of miR-19, a key oncogenic miRNA, in regulating Wnt/β-catenin pathway and lung CSCs has not been defined. Meanwhile, the effect of sulforaphane (SFN) on lung CSCs also remains to be elucidated. Here, we reported that lung CSCs up-regulated miR-19a and miR-19b expression. Overexpression of miR-19a/19b enhanced the ability of tumorsphere formation, up-regulated the expression of lung CSCs markers, increased Wnt/β-catenin pathway activation and β-catenin/TCF transcriptional activity in lung CSCs. In contrary, down-regulation of miR-19 suppressed lung CSCs activity and Wnt/β-catenin activation. We further revealed that miR-19 activated Wnt/β-catenin pathway by directly targeting GSK3β, the key negative modulator of this pathway. Moreover, we showed that SFN exhibited inhibitory effect on lung CSCs through suppressing miR-19 and Wnt/β-catenin pathway. Taken together, these data illustrate the role of miR-19 in regulating lung CSCs traits and miR-19/GSK3β/β-catenin axis in SFN intervention of lung CSCs. Findings from this study could provide important new insights into the molecular mechanisms of lung CSCs regulation as well as its target intervention.
Collapse
Affiliation(s)
- Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shijia Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
28
|
Shimamura M, Kurashige T, Mitsutake N, Nagayama Y. Aldehyde dehydrogenase activity plays no functional role in stem cell-like properties in anaplastic thyroid cancer cell lines. Endocrine 2017; 55:934-943. [PMID: 28040834 DOI: 10.1007/s12020-016-1224-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have revealed that aldehyde dehydrogenase (ALDH) is a candidate marker for thyroid cancer stem cells, although its activity is flexible. The goal of this study is to clarify the functional significance of ALDH enzymatic activity on thyroid cancer stem cells properties in anaplastic thyroid cancer cell lines. In vitro sphere formation assay was used to judge the stemness of 4 anaplastic thyroid cancer cell lines (FRO, ACT1, 8505C, and KTC3). Two well-known ALDH inhibitors, N,N-diethylaminobenzaldehyde (DEAB) and disulfiram (DS), were first used. DEAB (50 μM) almost completely suppressed ALDH activity without affecting cell proliferation or spherogenicity. Lack of effect of ALDH suppression on spherogenicity was confirmed using shRNA for ALDH1A3, an ALDH isozyme predominantly expressed in anaplastic thyroid cancer cell lines. In contrast, an ALDH2 inhibitor DS (1 μM) inhibited spherogenicity but did not inhibit ALDH1A3 activity. Based on the recent article from another group reporting the importance of sonic hedgehog (Shh) signaling in ALDH activity and spherogenicity in thyroid cancer, the effects of the Shh inhibitor cyclopamine were also studied. Like DS, cyclopamine (1 μM) decreased spherogenicity but not ALDH activity. Finally, exogenous expression of ALDH1A3 in otherwise ALDH- TPC1 cells (a papillary thyroid cancer cell line) revealed no effect on spherogenicity. In conclusion, we here show no functional role for ALDH activity in thyroid thyroid cancer stem cells properties. That is, ALDH activity and spherogenicity are clearly dissociable. Further understanding of thyroid cancer stem cells biology in thyroid cancers remains necessary for the future development of thyroid thyroid cancer stem cells-targeted therapies.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
29
|
Liotti F, Collina F, Pone E, La Sala L, Franco R, Prevete N, Melillo RM. Interleukin-8, but Not the Related Chemokine CXCL1, Sustains an Autocrine Circuit Necessary for the Properties and Functions of Thyroid Cancer Stem Cells. Stem Cells 2016; 35:135-146. [DOI: 10.1002/stem.2492] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/03/2016] [Accepted: 08/21/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Federica Liotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; University of Naples “Federico II”; Naples Italy
| | - Francesca Collina
- Struttura Complessa di Anatomia Patologica, Istituto Nazionale Tumori; Fondazione G. Pascale Naples Italy
| | - Emanuela Pone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; University of Naples “Federico II”; Naples Italy
| | - Lucia La Sala
- Struttura Complessa di Anatomia Patologica, Istituto Nazionale Tumori; Fondazione G. Pascale Naples Italy
| | - Renato Franco
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva; Second University of Naples; Naples Italy
| | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali; University of Naples “Federico II”; Naples Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR “G. Salvatore”; Naples Italy
| | - Rosa Marina Melillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; University of Naples “Federico II”; Naples Italy
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR “G. Salvatore”; Naples Italy
| |
Collapse
|
30
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
31
|
Harada K, Ferdous T, Cui D, Kuramitsu Y, Matsumoto T, Ikeda E, Okano H, Ueyama Y. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors. BMC Cancer 2016; 16:548. [PMID: 27464948 PMCID: PMC4963932 DOI: 10.1186/s12885-016-2416-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Background The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. Methods We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. Results The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor-2 (FGF-2) and epidermal Growth Factor (EGF). Conclusion These findings suggest that artificial cancer stem cells obtained by the induction of cellular reprogramming may be useful for investigating the acquisition of potential malignancy as well as screening the CSCs-targeting drugs.
Collapse
Affiliation(s)
- Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan.
| | - Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Dan Cui
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Yasuhiro Kuramitsu
- Department of Biochemistry and Functional Proteomics, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Takuya Matsumoto
- Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
32
|
Nagayama Y, Shimamura M, Mitsutake N. Cancer Stem Cells in the Thyroid. Front Endocrinol (Lausanne) 2016; 7:20. [PMID: 26973599 PMCID: PMC4770029 DOI: 10.3389/fendo.2016.00020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- *Correspondence: Yuji Nagayama,
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
33
|
Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing migration and invasion. Surgery 2015; 159:142-51. [PMID: 26542767 DOI: 10.1016/j.surg.2015.07.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/16/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thyroid cancer stem cells (CSCs) with ALDH and CD44 markers contribute to tumor growth and aggressiveness. We hypothesized that novel HSP90 inhibitors (KU711, WGA-TA) and 17-AAG can effectively target the function of thyroid CSCs in vitro and prevent migration and invasion. METHODS Validated papillary (TPC1), follicular (FTC238,WRO), and anaplastic (ACT1) human thyroid cancer cell lines were treated with 3 HSP90 inhibitors. CSCs were quantified for aldehyde dehydrogenase by flow cytometry, CD44 expression by Western blot, and thyrosphere formation assay. Cellular pathway proteins were analyzed by Western blot and migration/invasion by Boyden-chambers. RESULTS WGA-TA and 17-AAG induced HSP70 compensation (not observed with KU711) on Western blot in all cell lines (>1,000 fold vs controls). Only WGA-TA degraded HSP90-Cdc37 complexing by 60-70% versus controls. Expression of HSP90 clients β-catenin, BRAF, Akt, and phospho-Akt were significantly inhibited by WGA-TA treatment (50-80%, 50-90%, >80%, and >90%) compared with controls, KU711, and 17-AAG treatment. KU711 and WGA-TA decreased CD44 expression in all cell lines (25-60% vs controls/17-AAG), decreased ALDEFLOR activity by 69-98% (P < .005), and decreased sphere formation by 64-99% (P < .05 each). Finally, cell migration was decreased by 31-98%, 100%, and 30-38%, and invasion by 75-100%, 100%, and 47% by KU711,WGA-TA, and 17-AAG treatment (P < .05) each, respectively. CONCLUSION KU711 and WGA-TA are novel HSP90 inhibitors targeting CSC function and inhibiting cell migration/invasion in differentiated and anaplastic thyroid cancers, warranting further translational evaluation in vivo.
Collapse
|
34
|
Visciano C, Prevete N, Liotti F, Marone G. Tumor-Associated Mast Cells in Thyroid Cancer. Int J Endocrinol 2015; 2015:705169. [PMID: 26379707 PMCID: PMC4563106 DOI: 10.1155/2015/705169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
There is compelling evidence that the tumor microenvironment plays a major role in mediating aggressive features of cancer cells, including invasive capacity and resistance to conventional and novel therapies. Among the different cell populations that infiltrate cancer stroma, mast cells (MCs) can influence several aspects of tumor biology, including tumor development and progression, angiogenesis, lymphangiogenesis, and tissue remodelling. Thyroid cancer (TC), the most frequent neoplasia of the endocrine system, is characterized by a MC infiltrate, whose density correlates with extrathyroidal extension and invasiveness. Recent evidence suggests the occurrence of epithelial-to-mesenchymal transition (EMT) and stemness in human TC. The precise role of immune cells and their mediators responsible for these features in TC remains unknown. Here, we review the relevance of MC-derived mediators (e.g., the chemokines CXCL1/GRO-α, CXCL10/IP-10, and CXCL8/IL-8) in the context of TC. CXCL1/GRO-α and CXCL10/IP-10 appear to be involved in the stimulation of cell proliferation, while CXCL8/IL-8 participates in the acquisition of TC malignant traits through its ability to induce/enhance the EMT and stem-like features of TC cells. The inhibition of chemokine signaling may offer novel therapeutic approaches for the treatment of refractory forms of TC.
Collapse
Affiliation(s)
- Carla Visciano
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, 80131 Naples, Italy
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, “G. Salvatore”, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunologic Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
35
|
Dettmer MS, Schmitt A, Steinert H, Capper D, Moch H, Komminoth P, Perren A. Tall cell papillary thyroid carcinoma: new diagnostic criteria and mutations in BRAF and TERT. Endocr Relat Cancer 2015; 22:419-29. [PMID: 25870252 DOI: 10.1530/erc-15-0057] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 02/05/2023]
Abstract
The tall cell (TC) variant of papillary thyroid carcinoma (PTC) has an unfavorable prognosis. The diagnostic criteria remain inconsistent, and the role of a minor TC component is unclear. Molecular diagnostic markers are not available; however, there are two potential candidates: BRAF V600E and telomerase reverse transcriptase (TERT) promoter mutations. Using a novel approach, we enriched a collective with PTCs that harbored an adverse outcome, which overcame the limited statistical power of most studies. This enabled us to review 125 PTC patients, 57 of which had an adverse outcome. The proportion of TCs that constituted a poor prognosis was assessed. All of the tumors underwent sequencing for TERT promoter and BRAF V600E mutational status and were stained with an antibody to detect the BRAF V600E mutation. A 10% cutoff for TCs was significantly associated with advanced tumor stage and lymph node metastasis. Multivariate analysis showed that TCs above 10% were the only significant factor for overall, tumor-specific, and relapse-free survival. Seven percent of the cases had a TERT promoter mutation, whereas 61% demonstrated a BRAF mutation. The presence of TC was significantly associated with TERT promoter and BRAF mutations. TERT predicted highly significant tumor relapse (P<0.001). PTCs comprised of at least 10% TCs are associated with an adverse clinical outcome and should be reported accordingly. BRAF did not influence patient outcome. Nevertheless, a positive status should encourage the search for TCs. TERT promoter mutations are a strong predictor of tumor relapse, but their role as a surrogate marker for TCs is limited.
Collapse
Affiliation(s)
- Matthias S Dettmer
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - Anja Schmitt
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - Hans Steinert
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - David Capper
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - Holger Moch
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - Paul Komminoth
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| | - Aurel Perren
- Institute of PathologyUniversity of Bern, Murtenstrasse 31, 3010 Bern, SwitzerlandDivision of Nuclear MedicineUniversity Hospital Zurich, Zurich, SwitzerlandDepartment of NeuropathologyInstitute of Pathology, German Cancer Research Center (DKFZ), Ruprecht-Karls University, and Clinical Cooperation Unit Neuropathology, Heidelberg, GermanyInstitute of Surgical PathologyUniversity Hospital Zurich, Zurich, SwitzerlandInstitute of Surgical PathologyTriemlispital, Zürich, Switzerland
| |
Collapse
|
36
|
Zhou L, Lu L, Wicha MS, Chang AE, Xia JC, Ren X, Li Q. Promise of cancer stem cell vaccine. Hum Vaccin Immunother 2015; 11:2796-9. [PMID: 26337078 PMCID: PMC5054775 DOI: 10.1080/21645515.2015.1083661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Dendritic cell (DC)-based vaccines designed to target cancer stem cells (CSC) can induce significant antitumor responses via conferring host anti-CSC immunity. Our recent studies have demonstrated that CSC-DC vaccine could inhibit metastasis of primary tumors and induce humoral immune responses against cancer stem cells. This approach highlights the promise of cancer stem cell vaccine in cancer immunotherapy.
Collapse
Affiliation(s)
- Li Zhou
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
- Department of Biotherapy; Tianjin University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Tianjin, China
| | - Lin Lu
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center; Guangzhou, China
- Present affiliation: Department of Medical Oncology; Guangzhou First People’s Hospital; Guangzhou Medical University; Guangzhou, China
| | - Max S Wicha
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| | - Alfred E Chang
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| | - Jian-chuan Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xiubao Ren
- Department of Biotherapy; Tianjin University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Tianjin, China
| | - Qiao Li
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
37
|
Bhatia P, Tsumagari K, Abd Elmageed ZY, Friedlander P, Buell JF, Kandil E. Stem cell biology in thyroid cancer: Insights for novel therapies. World J Stem Cells 2014; 6:614-619. [PMID: 25426258 PMCID: PMC4178261 DOI: 10.4252/wjsc.v6.i5.614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review.
Collapse
|