1
|
Zhang X, Yang Z, Xu Q, Xu C, Shi W, Pang R, Zhang K, Liang X, Li H, Li Z, Zhang H. Dexamethasone Induced Osteocyte Apoptosis in Steroid-Induced Femoral Head Osteonecrosis through ROS-Mediated Oxidative Stress. Orthop Surg 2024; 16:733-744. [PMID: 38384174 PMCID: PMC10925516 DOI: 10.1111/os.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Glucocorticoid (GC) overuse is strongly associated with steroid-induced osteonecrosis of the femoral head (SINFH). However, the underlying mechanism of SINFH remains unclear. This study aims to investigate the effect of dexamethasone (Dex)-induced oxidative stress on osteocyte apoptosis and the underlying mechanisms. METHODS Ten patients with SINFH and 10 patients with developmental dysplasia of the hips (DDH) were enrolled in our study. Sixty rats were randomly assigned to the Control, Dex, Dex + N-Acetyl-L-cysteine (NAC), Dex + Dibenziodolium chloride (DPI), NAC, and DPI groups. Magnetic resonance imaging (MRI) was used to examine edema in the femoral head of rats. Histopathological staining was performed to assess osteonecrosis. Immunofluorescence staining with TUNEL and 8-OHdG was conducted to evaluate osteocyte apoptosis and oxidative damage. Immunohistochemical staining was carried out to detect the expression of NOX1, NOX2, and NOX4. Viability and apoptosis of MLO-Y4 cells were measured using the CCK-8 assay and TUNEL staining. 8-OHdG staining was conducted to detect oxidative stress. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure reactive oxygen species (ROS). The expression of NOX1, NOX2, and NOX4 in MLO-Y4 cells was analyzed by Western blotting. Multiple comparisons were performed using one-way analysis of variance (ANOVA). RESULTS In patients and the rat model, hematoxylin-eosin (HE) staining revealed a significantly higher rate of empty lacunae in the SINFH group than in the DDH group. Immunofluorescence staining indicated a significant increase in TUNEL-positive cells and 8-OHdG-positive cells in the SINFH group compared to the DDH group. Immunohistochemical staining demonstrated a significant increase in the expression of NOX1, NOX2, and NOX4 proteins in SINFH patients compared to DDH patients. Moreover, immunohistochemical staining showed a significant increase in the proportion of NOX2-positive cells compared to the Control group in the femoral head of rats. In vitro, Dex significantly inhibited the viability of osteocyte cells and induced apoptosis. After Dex treatment, the intracellular ROS level increased. However, Dex treatment did not alter the expression of NOX proteins in vitro. Additionally, NAC and DPI inhibited the generation of intracellular ROS and partially alleviated osteocyte apoptosis in vivo and in vitro. CONCLUSION This study demonstrates that GC promotes apoptosis of osteocyte cells through ROS-induced oxidative stress. Furthermore, we found that the increased expression of NOXs induced by GC serves as an important source of ROS generation.
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Zhenhuan Yang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Qian Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Chunlei Xu
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Wei Shi
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Ran Pang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Kai Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xinyu Liang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Hui Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhijun Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Huafeng Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
Quan Y, Xu J, Xu Q, Guo Z, Ou R, Shang H, Wei Q. Association between the risk and severity of Parkinson's disease and plasma homocysteine, vitamin B12 and folate levels: a systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1254824. [PMID: 37941998 PMCID: PMC10628521 DOI: 10.3389/fnagi.2023.1254824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Background Parkinson's disease (PD) is recognized as the second most prevalent progressive neurodegenerative disease among the elderly. However, the relationship between PD and plasma homocysteine (Hcy), vitamin B12, and folate has yielded inconsistent results in previous studies. Hence, in order to address this ambiguity, we conducted a meta-analysis to summarize the existing evidence. Methods Suitable studies published prior to May 2023 were identified by searching PubMed, EMBASE, Medline, Ovid, and Web of Science. The methodological quality of eligible studies was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). Meta-analysis and publication bias were then performed using R version 4.3.1. Results The results of our meta-analysis, consisting of case-control and cross-sectional studies, showed that PD patients had lower folate and vitamin B12 levels (SMD [95%CI]: -0.30[-0.39, -0.22], p < 0.001 for Vitamin B12; SMD [95%CI]: -0.20 [-0.28, -0.13], p < 0.001 for folate), but a significant higher Hcy level (SMD [95%CI]: 0.86 [0.59, 1.14], p < 0.001) than healthy people. Meanwhile, PD was significantly related to hyperhomocysteinemia (SMD [95%]: 2.02 [1.26, 2.78], p < 0.001) rather than plasma Hcy below 15 μmol/L (SMD [95%]: -0.31 [-0.62, 0.00], p = 0.05). Subgroup analysis revealed associations between the Hcy level of PD patients and region (p = 0.03), age (p = 0.03), levodopa therapy (p = 0.03), Hoehn and Yahr stage (p < 0.001), and cognitive impairment (p < 0.001). However, gender (p = 0.38) and sample size (p = 0.49) were not associated. Conclusion Hcy, vitamin B12, and folic acid potentially predict the onset and development of PD. Additionally, multiple factors were linked to Hcy levels in PD patients. Further studies are needed to comprehend their roles in PD.
Collapse
Affiliation(s)
- Yuxin Quan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jisen Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqing Guo
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
The effect of simvastatin-loaded methoxy poly(ethylene glycol)-polylactic acid nanoparticles on osteoblasts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Zinellu A, Mangoni AA. Effect of statin treatment on homocysteine concentrations: an updated systematic review and meta-analysis with meta-regression. Expert Rev Clin Pharmacol 2022; 15:443-459. [PMID: 35482022 DOI: 10.1080/17512433.2022.2072293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Statins might exert atheroprotective effects through lowering the pro-atherogenic amino acid homocysteine. We conducted an updated systematic review and meta-analysis of the effect of statins on circulating homocysteine. METHODS A systematic literature search was conducted in PubMed, Web of Science, and Scopus, from inception to July 2021. The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for analytical studies. Certainty of evidence was assessed using GRADE. RESULTS In 61 treatment arms in 2,218 patients (mean age 55 years, 52% males), statins significantly reduced homocysteine concentrations (weighted mean difference, WMD = -2.46 µmol/L, 95% CI -3.17 to -1.75 µmol/L, p < 0.001; high certainty of evidence). Similar results were observed in a subgroup of 10 randomized placebo-controlled studies (WMD = -2.45 µmol/L, 95% CI -4.43 to -0.47 µmol/L, p = 0.015). The extreme heterogeneity observed was virtually removed in a subgroup of 10 studies using fluorescence polarization immunoassay for homocysteine measurement. There was no publication bias. In sensitivity analysis, the pooled WMD values were not modified when individual studies were sequentially removed. In meta-regression, the WMD was significantly associated with proportion of males and publication year. CONCLUSIONS Statins significantly lower homocysteine concentrations.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
5
|
Huang C, Liang D, Huang C, Li B, He J, Huang X. The protective effects of simvastatin in Cadmium-Induced preosteoblast injury through Nox4. J Recept Signal Transduct Res 2020; 42:117-124. [PMID: 33349105 DOI: 10.1080/10799893.2020.1859533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cadmium (Cd) has a direct toxic effect on bones. Statins such as simvastatin have protective effects on various diseases, including on tissue injury. The current study revealed the efficacy of simvastatin on Cd-induced preosteoblast injury. Preosteoblast MC3T3-E1 cells were incubated with various doses of CdCl2 for 12 h, 24 h and 48 h, and then the cell cytotoxicity was assessed using MTT assay and flow cytometry, respectively. The expression level of Nox4 was assessed by Western blot and qRT-PCR. The morphological appearance of MC3T3-E1 cells was observed under a microscope. Cells exposed to CdCl2 (5 µM) were further treated by simvastatin at various doses, subsequently cell viability, apoptosis and the expression of Nox4 were measured. Furthermore, to confirm the protective effects of simvastatin on Cd-induced pre-osteoblast injury, functional rescue assays were performed after corresponding cell treatment by simvastatin (10-8 M), CdCl2 (5 µM), and overexpression of Nox4. Expressions of cell apoptosis-related markers were measured by Western blot and qRT-PCR. The results revealed that CdCl2 caused MC3T3-E1 cell injury because the cell viability was decreased and the apoptosis was increased. Nox4 expression was up-regulated with the increase of CdCl2 concentrations. Simvastatin increased the cell viability, relieved the cell apoptosis and Nox4 expression previously increased by CdCl2. The effects of CdCl2 on MC3T3-E1 cells and Nox4 expression could be attenuated by simvastatin, and promoted by Nox4 overexpression. The current study found that simvastatin protects Cd-induced preosteoblast injury via Nox4, thus, it can be used as a potential drug for treating cadmium-induced bone injury.
Collapse
Affiliation(s)
- Chongxia Huang
- Department of Rehabilitation, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Du Liang
- Department of Orthopedics and Arthrolog, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Chongbo Huang
- Department of Orthopedic Surgery, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Baolin Li
- Department of Orthopedic Surgery, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Jiandong He
- Department of Orthopedics and Arthrolog, Guangzhou Orthopedic-Traumatological Hospital, Guangzhou, China
| | - Ximou Huang
- Department of Orthopedics and Traumatology, Guangzhou Yuexiu District Orthopedics and Traumatology Rehabilitation, Guangzhou, China
| |
Collapse
|
6
|
Verhaart IEC, Cappellari O, Tanganyika-de Winter CL, Plomp JJ, Nnorom S, Wells KE, Hildyard JCW, Bull D, Aartsma-Rus A, Wells DJ. Simvastatin Treatment Does Not Ameliorate Muscle Pathophysiology in a Mouse Model for Duchenne Muscular Dystrophy. J Neuromuscul Dis 2020; 8:845-863. [PMID: 33044191 PMCID: PMC8543260 DOI: 10.3233/jnd-200524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy is an X-linked, recessive muscular dystrophy in which the absence of the dystrophin protein leads to fibrosis, inflammation and oxidative stress, resulting in loss of muscle tissue. Drug repurposing, i.e. using drugs already approved for other disorders, is attractive as it decreases development time. Recent studies suggested that simvastatin, a cholesterol lowering drug used for cardiovascular diseases, has beneficial effects on several parameters in mdx mice. To validate properly the effectiveness of simvastatin, two independent labs tested the effects of 12-week simvastatin treatment in either young (starting at 4 weeks of age) or adult (starting at 12 weeks of age) mdx mice. In neither study were benefits of simvastatin treatment observed on muscle function, histology or expression of genes involved in fibrosis, regeneration, oxidative stress and autophagy. Unexpectedly, although the treatment protocol was similar, simvastatin plasma levels were found to be much lower than observed in a previous study. In conclusion, in two laboratories, simvastatin did not ameliorate disease pathology in mdx mice, which could either be due to the ineffectiveness of simvastatin itself or due to the low simvastatin plasma levels following oral administration via the food.
Collapse
Affiliation(s)
- Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Ornella Cappellari
- Department of Comparative Biomedical Sciences, Neuromuscular Diseases Group, Royal Veterinary College, London, United Kingdom.,Current address: Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofia Nnorom
- Department of Comparative Biomedical Sciences, Neuromuscular Diseases Group, Royal Veterinary College, London, United Kingdom.,Current address: Cancer Clinical Trials Unit, University College London Hospital, United Kingdom
| | - Kim E Wells
- Department of Comparative Biomedical Sciences, Neuromuscular Diseases Group, Royal Veterinary College, London, United Kingdom
| | - John C W Hildyard
- Department of Comparative Biomedical Sciences, Neuromuscular Diseases Group, Royal Veterinary College, London, United Kingdom.,Current address: Department of Clinical Science and Services, Comparative Neuromuscular Diseases, Royal Veterinary College, London, United Kingdom
| | - David Bull
- Duchenne UK, Unit G20, Charecroft Way, Hammersmith, United Kingdom
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dominic J Wells
- Department of Comparative Biomedical Sciences, Neuromuscular Diseases Group, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
7
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
Gorabi AM, Kiaie N, Hajighasemi S, Banach M, Penson PE, Jamialahmadi T, Sahebkar A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J Clin Med 2019; 8:2051. [PMID: 31766595 PMCID: PMC6947613 DOI: 10.3390/jcm8122051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
In addition to their cholesterol-lowering effects, statins are associated with pleiotropic effects including improvements in heart failure (HF), reduced blood pressure, prevention of the rupture of atherosclerotic plaques and improved angiogenesis. In addition to these cardiovascular benefits, statins have been implicated in the treatment of neurological injuries, cancer, sepsis, and cirrhosis. These cholesterol-independent beneficial effects of statins are predominantly mediated through signaling pathways leading to increased production and bioavailability of nitric oxide (NO). In this review, the mechanistic pathways and therapeutic effects of statin-mediated elevations of NO are described and discussed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran;
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Peter E. Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran 1411713138, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| |
Collapse
|
9
|
Werner SL, Sharma R, Woodruff K, Horn D, Harris SE, Gorin Y, Lee DY, Hua R, Gu S, Fajardo RJ, Habib SL, Jiang JX. CSF-1 in Osteocytes Inhibits Nox4-mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus 2019; 4:e10080. [PMID: 32666016 DOI: 10.1002/jbm4.10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
CSF-1 is a key factor in regulating bone remodeling; osteocytes express CSF-1 and its receptor. Viable osteocytes are essential for bone remodeling through cell-cell contact and secretion of factors that regulate osteoblasts and osteoclasts. Increased oxidative stress contributes to osteocyte death and correlates with bone loss during aging. The NADPH oxidase Nox4 is a major source of ROS in bone. CSF-1 decreases Nox4, suggesting that CSF-1 protects against oxidative stress. Here, we show that osteocyte apoptosis previously reported in our global CSF-1KO mice is associated with increased Nox4, as well as 4-HNE expression in osteocytes. Osteocytes isolated from CSF-1KO mice were less viable and showed increased intracellular ROS, elevated NADPH oxidase activity/Nox4 protein, activation of mTOR/S6K, and downstream apoptosis signals compared with WT osteocytes. Nox4 expression was also increased in CSF-1KO osteocytes and colocalized with MitoTracker Red in mitochondria. Notably, CSF-1 inhibited Nox4 expression and apoptosis cascade signals. In additional studies, shNox4 decreased these signals in CSF-1KO osteocytes, whereas overexpression of Nox4 in WT osteocytes activated the apoptosis pathway. To determine the role of CSF-1 in osteocytes, DMP1Cre-CSF-1cKO (CSF-1cKO) mice that lack CSF-1 in osteocytes/late osteoblasts were developed. Osteocyte defects in CSF-1cKO mice overlapped with those in CSF-1KO mice, including increased apoptosis, Nox4, and 4-HNE-expressing osteocytes. CSF-1cKO mice showed unbalanced cancellous bone remodeling with decreased bone formation and resorption. Continued exposure to high Nox4/ROS levels may further compromise bone formation and predispose to bone loss and skeletal fragility. Taken together, our findings suggest a novel link between CSF-1, Nox4-derived ROS, and osteocyte survival/function that is crucial for osteocyte-mediated bone remodeling. Results reveal new mechanisms by which CSF-1/oxidative stress regulate osteocyte homeostasis, which may lead to therapeutic strategies to improve skeletal health in aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sherry L Werner
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Kathleen Woodruff
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Diane Horn
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Stephen E Harris
- Department of Periodontics University of Texas Health Science Center at San Antonio TX USA
| | - Yves Gorin
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Doug-Yoon Lee
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Roberto J Fajardo
- Department of Orthopedics University of Texas Health Science Center at San Antonio TX USA
| | - Samy L Habib
- South Texas Veterans Health Care and Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| |
Collapse
|
10
|
Nikolic Turnic TR, Jakovljevic VL, Djuric DM, Jeremic NS, Jeremic JN, Milosavljevic IM, Srejovic IM, Selakovic DV, Zivkovic VI. Efficiency of atorvastatin and simvastatin in improving cardiac function during the different degrees of hyperhomocysteinemia. Can J Physiol Pharmacol 2018; 96:1040-1049. [DOI: 10.1139/cjpp-2018-0102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to assess the impact of atorvastatin and simvastatin on myocardial contractility during the different degrees of hyperhomocysteinemia (HHcy) in rats. Study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. Animals were exposed to pharmacology treatment with atorvastatin in dose of 3 mg/kg per day i.p. or simvastatin in dose of 5 mg/kg per day i.p. at the same time every day, according to equivalent therapeutic doses of these statins (10 mg atorvastatin = 20 mg simvastatin). After the dietary manipulation and pharmacological treatment and confirmation of HHcy, all animals were sacrificed, hearts were isolated, and cardiac function was tested according to the Langendorff technique. Size of recovery of maximum rate of left ventricular development (dp/dtmax), minimum rate of left ventricular development (dp/dtmin), systolic left ventricular development, diastolic left ventricular development, heart rate, and coronary flow at the 40, 60, 80, 100, and 120 cmH2O coronary perfusion pressure were measured in state of physiological condition (homocysteine less than 15 μmol/L), mild HHcy, and moderate HHcy. Atorvastatin treatment significantly attenuated homocysteine-induced impairment of myocyte contractility and dominantly decreased dp/dtmax, dp/dtmin, and heart rate and induced greater changes in systolic left ventricular development compared with simvastatin. Treatment with atorvastatin seems able to revert systolic abnormalities and improve contractility during the different degrees of HHcy.
Collapse
Affiliation(s)
- Tamara R. Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, IM Sechenov 1st Moscow State Medical University, Moscow, Russian Federation
| | - Dragan M. Djuric
- Institute of Medical Physiology “Richard Burian”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena S. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N. Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Isidora M. Milosavljevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica V. Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Abstract
Accumulating evidence has shown that the risk of osteoporotic fractures is increased in patients with diabetes mellitus (DM). Thus, DM-induced bone fragility has been recently recognized as a diabetic complication. Because the fracture risk is independent of the reduction in bone mineral density, deterioration of the bone quality may be the main cause of bone fragility. Although its mechanism remains poorly understood, accumulated collagen cross-links of advanced glycation end-products (AGEs) and dysfunctions of osteoblast and osteocyte may be involved. Previous studies have suggested that various diabetes-related factors, such as chronic hyperglycemia, insulin, insulin-like growth factor-I, AGEs, and homocysteine, are associated with the risk of bone fragility caused by impaired bone formation and bone remodeling. Furthermore, several anti-diabetic drugs are known to affect bone metabolism and fracture risk. We herein review the association between DM and fracture risk as well as the mechanism of DM-induced bone fragility based on recent evidence.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | | |
Collapse
|
12
|
Abstract
Accumulating evidence has shown that bone and glucose metabolism are closely associated with each other. Since the risk of osteoporotic fractures is increased in patients with diabetes mellitus (DM), osteoporosis is recently recognized as one of diabetic complications, called DM-induced bone fragility. Previous studies showed that collagen cross-links of advanced glycation end products (AGEs) and dysfunctions of osteoblast and osteocyte are involved in DM-induced bone fragility. Circulating levels of AGEs and homocysteine are increased in patients with DM, and they directly impair the functions of osteoblast and osteocyte, resulting in decreased bone formation and bone remodeling. On the other hand, bone is recently recognized as an endocrine organ. Previous studies based on in vitro and animal studies showed that osteocalcin, which is specifically expressed in osteoblasts and secreted into the circulation, may regulate glucose homeostasis. Although several clinical studies reported the relationship between osteocalcin and glucose metabolism, further large-scale and intervention studies are necessary to confirm the beneficial effects of osteocalcin on glucose metabolism in human. It has been shown that adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor, is involved in bone metabolism. Adiponectin and metformin stimulate osteocalcin expression and the differentiation of osteoblasts via AMPK activation. Also, AMPK activation protects against oxidative stress-induced apoptosis of osteocytes. These findings suggest that AMPK in osteoblasts and osteocytes may be a therapeutic target for DM-induced bone fragility.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
13
|
Yin J, Han L, Cong W. Alpinumisoflavone rescues glucocorticoid-induced apoptosis of osteocytes via suppressing Nox2-dependent ROS generation. Pharmacol Rep 2017; 70:270-276. [PMID: 29477034 DOI: 10.1016/j.pharep.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/30/2017] [Accepted: 11/03/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Long term use of glucocorticoids is one of the most common causes of secondary osteoporosis. Osteocyte, the most abundant cell type in bone, coordinates the function of osteoblast and osteoclast. This study evaluates the protective effect of alpinumisoflavone (AIF), a naturally occurring flavonoid compound, on dexamethasone (Dex)-induced apoptosis of osteocytes. METHODS MLO-Y4 cell was used as a cell model. The effect of AIF on the cell viability was assessed by MTT assay. Apoptosis of MYL-Y4 cells was determined by DNA fragment detection ELISA kit and flow cytometry. Intracellular ROS level was determined by DCFH-DA staining. mRNA and protein expression of target genes were determined by qRT-PCR and western blot, respectively. RESULTS AIF effectively protected MLO-Y4 cells against Dex-induced apoptosis, which was associated with attenuation of Dex-induced ROS generation in MLO-Y4 cells. Furthermore, our data indicated that the expression of NAD(P)H oxidase 2 (Nox2) was suppressed by AIF, which in turn mediated the attenuating effect on Dex-induced ROS generation and apoptosis in MLO-Y4 cells. Moreover, our results showed that AIF modulated the expression of Nox2 by activating AMPK signaling. CONCLUSION AIF activated AMPK-dependent Nox2 signaling pathway to suppress Dex-induced ROS production in cultured osteocytes, which might explain its anti-apoptotic effect. These results indicate that activation of AMPK pathway by AIF could have beneficial effects on bone damage induced by excessive oxidative stress and osteocyte apoptosis.
Collapse
Affiliation(s)
- Jun Yin
- Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Leixiang Han
- Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Wei Cong
- Qilu Hospital of Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
14
|
Nikolic T, Zivkovic V, Srejovic I, Stojic I, Jeremic N, Jeremic J, Radonjic K, Stankovic S, Obrenovic R, Djuric D, Jakovljevic V. Effects of atorvastatin and simvastatin on oxidative stress in diet-induced hyperhomocysteinemia in Wistar albino rats: a comparative study. Mol Cell Biochem 2017. [PMID: 28620818 DOI: 10.1007/s11010-017-3099-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.
Collapse
Affiliation(s)
- T Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia
| | - I Stojic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - J Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - K Radonjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - S Stankovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - R Obrenovic
- Institute for Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - D Djuric
- Faculty of Medicine, Institute of Medical Physiology "Richard Burian", University of Belgrade, Belgrade, Serbia
| | - V Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica str. 69, P.O. Box 124, 34 000, Kragujevac, Serbia. .,Department of Human Pathology, University IM Sechenov, 1st Moscow State Medical, Moscow, Russia.
| |
Collapse
|