1
|
Wu O, Lu X, Leng J, Zhang X, Liu W, Yang F, Zhang H, Li J, Khederzadeh S, Liu X, Yuan C. Reevaluating Adiponectin's impact on obesity hypertension: a Chinese case-control study. BMC Cardiovasc Disord 2024; 24:208. [PMID: 38615012 PMCID: PMC11015577 DOI: 10.1186/s12872-024-03865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Obesity and hypertension are major risk factors for cardiovascular diseases that affect millions of people worldwide. Both conditions are associated with chronic low-grade inflammation, which is mediated by adipokines such as adiponectin. Adiponectin is the most abundant adipokine that has a beneficial impact on metabolic and vascular biology, while high serum concentrations are associated with some syndromes. This "adiponectin paradox" still needs to be clarified in obesity-associated hypertension. The aim of this study was to investigate how adiponectin affects blood pressure, inflammation, and metabolic function in obesity hypertension using a Chinese adult case-control study. METHODS A case-control study that had finished recruiting 153 subjects divided as four characteristic groups. Adiponectin serum levels were tested by ELISA in these subjects among these four characteristic Chinese adult physical examination groups. Waist circumference (WC), body mass index (BMI), systolic blood pressure (SB), diastolic blood pressure (DB), and other clinical laboratory data were collected. Analyzation of correlations between the research index and differences between groups was done by SPSS. RESULTS Serum adiponectin levels in the| normal healthy group (NH group) were significantly higher than those in the newly diagnosed untreated just-obesity group (JO group), and negatively correlated with the visceral adiposity index. With multiple linear egression analysis, it was found that, for serum adiponectin, gender, serum albumin (ALB), alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDLC) were the significant independent correlates, and for SB, age and HDLC were the significant independent correlates, and for DB, alkaline phosphatase (ALP) was the significant independent correlate. The other variables did not reach significance in the model. CONCLUSIONS Our study reveals that adiponectin's role in obesity-hypertension is multifaceted and is influenced by the systemic metabolic homeostasis signaling axis. In obesity-related hypertension, compensatory effects, adiponectin resistance, and reduced adiponectin clearance from impaired kidneys and liver all contribute to the "adiponectin paradox".
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhang Leng
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co., Ltd Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, People's Republic of China
| | - Fenfang Yang
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiajia Li
- Department of Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Tian CY, Yang QH, Lv HZ, Yue F, Zhou FF. Combined untargeted and targeted lipidomics approaches reveal potential biomarkers in type 2 diabetes mellitus cynomolgus monkeys. J Med Primatol 2024; 53:e12688. [PMID: 38083989 DOI: 10.1111/jmp.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND The significantly increasing incidence of type 2 diabetes mellitus (T2DM) over the last few decades triggers the demands of T2DM animal models to explore the pathogenesis, prevention, and therapy of the disease. The altered lipid metabolism may play an important role in the pathogenesis and progression of T2DM. However, the characterization of molecular lipid species in fasting serum related to T2DM cynomolgus monkeys is still underrecognized. METHODS Untargeted and targeted LC-mass spectrometry (MS)/MS-based lipidomics approaches were applied to characterize and compare the fasting serum lipidomic profiles of T2DM cynomolgus monkeys and the healthy controls. RESULTS Multivariate analysis revealed that 196 and 64 lipid molecules differentially expressed in serum samples using untargeted and targeted lipidomics as the comparison between the disease group and healthy group, respectively. Furthermore, the comparative analysis of differential serum lipid metabolites obtained by untargeted and targeted lipidomics approaches, four common serum lipid species (phosphatidylcholine [18:0_22:4], lysophosphatidylcholine [14:0], phosphatidylethanolamine [PE] [16:1_18:2], and PE [18:0_22:4]) were identified as potential biomarkers and all of which were found to be downregulated. By analyzing the metabolic pathway, glycerophospholipid metabolism was associated with the pathogenesis of T2DM cynomolgus monkeys. CONCLUSION The study found that four downregulated serum lipid species could serve as novel potential biomarkers of T2DM cynomolgus monkeys. Glycerophospholipid metabolism was filtered out as the potential therapeutic target pathway of T2DM progression. Our results showed that the identified biomarkers may offer a novel tool for tracking disease progression and response to therapeutic interventions.
Collapse
Affiliation(s)
- Chao-Yang Tian
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | | | - Hai-Zhou Lv
- Hainan Jingang Biotech Co., Ltd, Haikou, China
| | - Feng Yue
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Fei-Fan Zhou
- Sanya Research Institute of Hainan University, School of Biomedical Engineering, Hainan University, Sanya, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
3
|
Egashira K, Kajiya H, Tsutsumi T, Taniguchi Y, Kakura K, Ohno J, Kido H. AMPK activation enhances osteoblast differentiation on a titanium disc via autophagy. Int J Implant Dent 2024; 10:2. [PMID: 38286943 PMCID: PMC10825085 DOI: 10.1186/s40729-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024] Open
Abstract
PURPOSE The acquisition of osseointegration during implant therapy is slower and poorer in patients with diabetes compared with healthy persons. The serum concentration of adiponectin in patients with type II diabetes is lower than that of healthy persons via the suppression of AMP-activated protein kinase (AMPK). Therefore, we hypothesized that the AMPK activation enhances bone formation around implants, resulting in the improved acquisition of osseointegration. The purpose of this study was to evaluate the impact of AMPK activation on osteoblast differentiation and its mechanism of downstream signaling on titanium disc (Ti). METHODS Confluent mouse pre-osteoblasts (MC3T3-E1) cells (1 × 105 cells/well) were cultured with BMP-2 for osteoblast differentiation, in the presence or absence AICAR, an AMPK activator. We examined the effects of AMPK activation on osteoblast differentiation and the underlying mechanism on a Ti using a CCK8 assay, a luciferase assay, quantitative RT-PCR, and western blotting. RESULTS Although the proliferation rate of osteoblasts was not different between a Ti and a tissue culture polystyrene dish, the addition of AICAR, AMPK activator slightly enhanced osteoblast proliferation on the Ti. AICAR enhanced the BMP-2-dependent transcriptional activity on the Ti, leading to upregulation in the expression of osteogenesis-associated molecules. AICAR simultaneously upregulated the expression of autophagy-associated molecules on the Ti, especially LC3-II. AdipoRon, an adiponectin receptor type1/type2 activator activated AMPK, and upregulated osteogenesis-associated molecules on Ti. CONCLUSIONS AMPK activation enhances osteoblast differentiation on a Ti via autophagy, suggesting that it promotes the acquisition of osseointegration during implant therapy.
Collapse
Affiliation(s)
- Kei Egashira
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, 814-0193, Japan.
| | - Takashi Tsutsumi
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Yusuke Taniguchi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
4
|
Iwabu M, Okada-Iwabu M, Kadowaki T, Yamauchi T. Elucidating exercise-induced skeletal muscle signaling pathways and applying relevant findings to preemptive therapy for lifestyle-related diseases. Endocr J 2022; 69:1-8. [PMID: 34511589 DOI: 10.1507/endocrj.ej21-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While it is well recognized that exercise represents a radical preventive and therapeutic measure for lifestyle-related diseases, it is clear that contemporary lifestyles abound with situations where exercise may be found difficult to implement on a continuous basis. Indeed, this has led to global expectations for elucidation of the exercise-activated skeletal muscle signaling pathways as well as for development of exercise mimics that effectively activate such pathways. It is shown that exercise activates the transcriptional coactivator PGC-1α via AMPK/SIRT1 in muscle, thereby not only enhancing mitochondrial function and muscle endurance but upregulating energy metabolism. Further, adipocyte-derived adiponectin is also shown to activate AMPK/SIRT1/PGC-1α via its receptor AdipoR1 in skeletal muscles. Thus, adiponectin/AdipoR1 signaling is thought to constitute exercise-mimicking signaling. Indeed, it has become clear that AMPK, SIRT1 and AdipoR activators act as exercise mimetics. With the crystal structures of AdipoR elucidated and humanized AdipoR mice generated toward optimization of candidate AdipoR-activators for human use, expectations are mounting for the clinical application in the near future of AdipoR activators as exercise mimetics in humans. This review provides an overview of molecules activated by exercise and compounds activating these molecules, with a focus on the therapeutic potential of AdipoR activators as exercise mimetics.
Collapse
Affiliation(s)
- Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Lagunas-Rangel FA. G protein-coupled receptors that influence lifespan of human and animal models. Biogerontology 2021; 23:1-19. [PMID: 34860303 PMCID: PMC8888397 DOI: 10.1007/s10522-021-09945-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Humanity has always sought to live longer and for this, multiple strategies have been tried with varying results. In this sense, G protein-coupled receptors (GPCRs) may be a good option to try to prolong our life while maintaining good health since they have a substantial participation in a wide variety of processes of human pathophysiology and are one of the main therapeutic targets. In this way, we present the analysis of a series of GPCRs whose activity has been shown to affect the lifespan of animal and human models, and in which we put a special interest in describing the molecular mechanisms involved. Our compilation of data revealed that the mechanisms most involved in the role of GPCRs in lifespan are those that mimic dietary restriction, those related to insulin signaling and the AMPK and TOR pathways, and those that alter oxidative homeostasis and severe and/or chronic inflammation. We also discuss the possibility of using agonist or antagonist drugs, depending on the beneficial or harmful effects of each GPCR, in order to prolong people's lifespan and healthspan.
Collapse
|
6
|
Przybyciński J, Dziedziejko V, Puchałowicz K, Domański L, Pawlik A. Adiponectin in Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21249375. [PMID: 33317050 PMCID: PMC7764041 DOI: 10.3390/ijms21249375] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is the adipokine associated with insulin sensitization, reducing liver gluconeogenesis, and increasing fatty acid oxidation and glucose uptake. Adiponectin is present in the kidneys, mainly in the arterial endothelium and smooth muscle cells, as well as in the capillary endothelium, and might be considered as a marker of many negative factors in chronic kidney disease. The last few years have brought a rising body of evidence that adiponectin is a multipotential protein with anti-inflammatory, metabolic, anti-atherogenic, and reactive oxygen species (ROS) protective actions. Similarly, adiponectin has shown many positive and direct actions in kidney diseases, and among many kidney cells. Data from large cross-sectional and cohort studies showed a positive correlation between serum adiponectin and mortality in chronic kidney disease. This suggests a complex interaction between local adiponectin action, comorbidities, and uremic milieu. In this review we discuss the role of adiponectin in chronic kidney disease.
Collapse
Affiliation(s)
- Jarosław Przybyciński
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.P.); (L.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (V.D.); (K.P.)
| | - Kamila Puchałowicz
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (V.D.); (K.P.)
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.P.); (L.D.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661611
| |
Collapse
|
7
|
Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2020; 129:3990-4000. [PMID: 31573548 DOI: 10.1172/jci129187] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis.
Collapse
Affiliation(s)
- C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, and.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
8
|
Un Nisa K, Reza MI. Key Relevance of Epigenetic Programming of Adiponectin Gene in Pathogenesis of Metabolic Disorders. Endocr Metab Immune Disord Drug Targets 2020; 20:506-517. [DOI: 10.2174/1871530319666190801142637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Background & Objective::
Significant health and social burdens have been created by the
growth of metabolic disorders like type 2 diabetes mellitus (T2DM), atherosclerosis, and non-alcoholic
steatohepatitis, worldwide. The number of the affected population is as yet rising, and it is assessed
that until 2030, 4−5 million individuals will acquire diabetes. A blend of environmental, genetic, epigenetic,
and other factors, such as diet, are accountable for the initiation and progression of metabolic
disorders. Several researches have shown strong relevance of adiponectin gene and metabolic disorders.
In this review, the potential influence of epigenetic mechanisms of adiponectin gene “ADIPOQ”
on increasing the risk of developing metabolic disorders and their potential in treating this major disorder
are discussed.
Results & Conclusion::
Various studies have postulated that a series of factors such as maternal High
fat diet (HFD), oxidative stress, pro-inflammatory mediators, sleep fragmentation throughout lifetime,
from gestation to old age, could accumulate epigenetic marks, including histone remodeling, DNA
methylation, and microRNAs (miRNAs) that, in turn, alter the expression of ADIPOQ gene and result
in hypoadiponectinemia which precipitates insulin resistance (IR) that in turn might induce or accelerate
the onset and development of metabolic disorder. A better understanding of global patterns of epigenetic
modifications and further their alterations in metabolic disorders will bestow better treatment
strategies design.
Collapse
Affiliation(s)
- Kaiser Un Nisa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| |
Collapse
|
9
|
Okada-Iwabu M, Iwabu M, Yamauchi T, Kadowaki T. Drug development research for novel adiponectin receptor-targeted antidiabetic drugs contributing to healthy longevity. Diabetol Int 2019; 10:237-244. [PMID: 31592400 DOI: 10.1007/s13340-019-00409-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023]
Abstract
It is well recognized that the decrease of adiponectin associated with high-fat diet and lack of exercise accounts for the onset of insulin resistance, type 2 diabetes, the metabolic syndrome, and cardiovascular disease. Our research efforts have led to the identification of adiponectin receptors, AdipoR1 and AdipoR2, with the former shown to activate AMP kinase in the liver and the latter shown to activate peroxisome proliferator-activated receptor-α signaling thereby increasing fatty acid oxidation. Again, adiponectin upregulates mitochondrial function in the skeletal muscle thereby improving glucose/lipid metabolism and insulin resistance. These findings suggested that activation of adiponectin/AdipoR signaling could represent a viable therapeutic approach to lifestyle-linked diseases associated with prevalent obesity thus contributing to healthy longevity in humans. Indeed, they have led to the successful discovery of AdipoRon, a small-molecule AdipoR-activating compound. Thus far, AdipoRon has been found not only to improve insulin resistance in mice but to prolong their lifespan shortened by high-fat diet. Additionally, our structure-based drug discovery research has led to AdipoR being identified as an entirely novel structure having a zinc iron bound within its seven-transmembrane domain as well as an opposite orientation to that of G protein-coupled receptors. It is expected that increasing insight into AdipoR signaling will facilitate the structure-based optimization of candidate small-molecule AdipoR-activating compounds for human use as well as the development of molecularly targeted and calorie-limiting/exercise-mimicking agents for lifestyle-linked diseases.
Collapse
Affiliation(s)
- Miki Okada-Iwabu
- 1Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- 2Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan
| | - Masato Iwabu
- 1Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- 2Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, 22nd Century Medical and Research Center, The University of Tokyo, Tokyo, Japan
- 3PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama Japan
| | - Toshimasa Yamauchi
- 1Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- 4CREST, Japan Science and Technology Agency, Kawaguchi, Saitama Japan
| | - Takashi Kadowaki
- 1Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- 5Department of Prevention of Diabetes and Life-style Related Diseases, The University of Tokyo, Tokyo, Japan
- 6Department of Metabolism and Nutrition, Teikyo University Mizonokuchi Hospital, Kanagawa, Japan
| |
Collapse
|
10
|
Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T. Adiponectin/AdipoR Research and Its Implications for Lifestyle-Related Diseases. Front Cardiovasc Med 2019; 6:116. [PMID: 31475160 PMCID: PMC6703139 DOI: 10.3389/fcvm.2019.00116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
The number of patients with obesity continues to increase seriously worldwide. It has become clear that, against a background of insulin resistance, obesity induces the so-called metabolic syndrome consisting of diabetes, hypertension, and dyslipidemia, leading, consequently, to an increased incidence of cardiovascular disease in affected individuals. It is shown that environmental factors, e.g., high-fat diet and lack of physical activity, not only promote the onset of obesity but lead to impairment of the action of adiponectin and its receptors, thus accounting in part for the onset of insulin resistance, type 2 diabetes/metabolic syndrome, and atherosclerosis in modern society. This review is intended to highlight some milestones in adipocyte research from the discovery of the insulin-sensitizing properties of adiponectin to the elucidation of the structures of its receptors, as well as to clarify their therapeutic implications and prospects for lifestyle-related diseases.
Collapse
Affiliation(s)
- Masato Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Tokyo, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Miki Okada-Iwabu
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Advanced Research on Pathophysiology of Metabolic Diseases, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Prevention of Diabetes and Life-Style Related Diseases, The University of Tokyo, Tokyo, Japan.,Department of Metabolism and Nutrition, Faculty of Medicine, Mizonokuchi Hospital, Teikyo University, Kawasaki, Japan
| |
Collapse
|