1
|
Wilson R, Mukherjee-Roy N, Gattineni J. The role of fibroblast growth factor 23 in regulation of phosphate balance. Pediatr Nephrol 2024; 39:3439-3451. [PMID: 38874635 DOI: 10.1007/s00467-024-06395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024]
Abstract
Phosphate is essential for numerous biological processes, and serum levels are tightly regulated to accomplish these functions. The regulation of serum phosphate in a narrow physiological range is a well-orchestrated process and involves the gastrointestinal (GI) tract, bone, kidneys, and several hormones, namely, parathyroid hormone, fibroblast growth factor 23 (FGF23), and 1,25-dihydroxyvitamin D (1,25 Vitamin D). Although primarily synthesized in the bone, FGF23, an endocrine FGF, acts on the kidney to regulate phosphate and Vitamin D homeostasis by causing phosphaturia and reduced levels of 1,25 Vitamin D. Recent studies have highlighted the complex regulation of FGF23 including transcriptional and post-translational modification and kidney-bone cross talk. Understanding FGF23 biology has led to the identification of novel therapeutic agents to treat diseases that disrupt phosphate metabolism secondary to FGF23. The focus of this review is to provide an overview of phosphate homeostasis, FGF23 biology, and the role of FGF23 in phosphate balance.
Collapse
Affiliation(s)
| | - Neije Mukherjee-Roy
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Jyothsna Gattineni
- Division of Pediatric Nephrology, Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA.
| |
Collapse
|
2
|
Gwadera Ł, Białas AJ, Kumor-Kisielewska A, Miłkowska-Dymanowska J, Majewski S, Piotrowski WJ. Calcium, Phosphate, and Vitamin D Status in Patients with Sarcoidosis-Associations with Disease Activity and Symptoms. J Clin Med 2023; 12:4745. [PMID: 37510860 PMCID: PMC10381487 DOI: 10.3390/jcm12144745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Sarcoidosis is a systemic granulomatous disease with a variety of presentations. One of the known symptoms are altered vitamin D metabolism and hypercalcemia. In our study, we aimed to assess associations between disease activity, inflammatory parameters, and vitamin D and calcium status. The secondary aim was to find any dependencies between calcium and vitamin D metabolism and fatigue and quality of life in patients with sarcoidosis. We enrolled 58 patients with sarcoidosis (47 classified as active disease, 11 classified as non-active) and compared them with 25 healthy volunteers. Calcium concentration was significantly higher in the study group than in healthy controls. It correlated with some inflammatory markers but not with vitamin D status. Not calcium nor vitamin D, but phosphate concentration correlated with life quality was assessed with the use of the Sarcoidosis Health Questionnaire. An association between phosphate concentration and fatigue was also noted, but it did not reach statistical significance. Calcium concentration was higher in patients with sarcoidosis, but it was not an indicator of the disease activity, while phosphate concentration was significantly lower in patients with active sarcoidosis.
Collapse
Affiliation(s)
- Łukasz Gwadera
- Department of Pneumology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Adam J Białas
- Department of Pneumology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | | | - Sebastian Majewski
- Department of Pneumology, Medical University of Lodz, 90-153 Lodz, Poland
| | | |
Collapse
|
3
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
4
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
5
|
Jan de Beur SM, Minisola S, Xia WB, Abrahamsen B, Body JJ, Brandi ML, Clifton-Bligh R, Collins M, Florenzano P, Houillier P, Imanishi Y, Imel EA, Khan AA, Zillikens MC, Fukumoto S. Global guidance for the recognition, diagnosis, and management of tumor-induced osteomalacia. J Intern Med 2023; 293:309-328. [PMID: 36511653 PMCID: PMC10108006 DOI: 10.1111/joim.13593] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by mesenchymal tumors that secrete fibroblast growth factor 23 (FGF23). Patients present with progressive bone pain, muscle weakness, and fragility fractures. TIO is characterized by hypophosphatemia, excess renal phosphate excretion, and low/inappropriately normal 1,25-dihydroxyvitamin D (1,25(OH)2 D) levels. Rarity and enigmatic clinical presentation of TIO contribute to limited awareness among the medical community. Accordingly, appropriate diagnostic tests may not be requested, leading to delayed diagnosis and poorer patient outcomes. We have developed a global guidance document to improve the knowledge of TIO in the medical community, enabling the recognition of patients with TIO and appropriate referral. We provide recommendations aiding diagnosis, referral, and treatment, helping promote a global standard of patient management. We reviewed the literature and conducted a three-round Delphi survey of TIO experts. Statements were drafted based on published evidence and expert opinions (≥70% consensus required for final recommendations). Serum phosphate should be measured in patients presenting with chronic muscle pain or weakness, fragility fractures, or bone pain. Physical examination should establish features of myopathy and identify masses that could be causative tumors. Priority laboratory evaluations should include urine/serum phosphate and creatinine to assess renal tubular reabsorption of phosphate and TmP/GFR, alkaline phosphatase, parathyroid hormone, 25-hydroxyvitamin D, 1,25(OH)2 D, and FGF23. Patients with the clinical/biochemical suspicion of TIO should be referred to a specialist for diagnosis confirmation, and functional imaging should be used to localize causative tumor(s). Recommended treatment is tumor resection or, with unresectable/unidentifiable tumors, phosphate salts plus active vitamin D, or burosumab.
Collapse
Affiliation(s)
- Suzanne M Jan de Beur
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Wei-Bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, NHC, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bo Abrahamsen
- Open Patient data Explorative Network (OPEN), Department of Clinical Research, University of Southern Denmark and Odense University Hospital, Odense, Denmark.,Department of Medicine, Holbaek Hospital, Holbaek, Denmark.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, University Hospital of Florence, Florence, Italy
| | - Roderick Clifton-Bligh
- Department of Endocrinology and Diabetes, Royal North Shore Hospital, Sydney, Australia.,Cancer Genetics Unit, Kolling Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - Michael Collins
- Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Pablo Florenzano
- Centro Traslacional de Endocrinología UC (CETREN-UC), Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Département des Maladies Rénales et Métaboliques, Hôpital Européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yasuo Imanishi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Erik A Imel
- Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aliya A Khan
- Division of Endocrinology and Metabolism, Calcium Disorders Clinic, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
de Oliveira NM, Lopes L, Chéu MH, Soares E, Meireles D, Machado J. Updated Mineral Composition and Potential Therapeutic Properties of Different Varieties of Olive Leaves from Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:916. [PMID: 36840264 PMCID: PMC9959211 DOI: 10.3390/plants12040916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Olea europaea L. folium has been studied for its potential nutraceutical properties. Quantitative and qualitative analyses were conducted on samples of Madural, Verdeal, and Cobrançosa elementary leaves and leave sprouts (mamões) collected in the region of Valpaços, Portugal. Mineral analysis determined the measurements of the levels of several macro- and micro-elements based on ICP-MS techniques. The inorganic analysis in this work allowed us to propose olive leaf extract (OLE) from different cultivars as a viable and affordable source of mineral substrates to address disorders related to essential elements such as Na, K, Mg, Ca, Mn, Fe, and Cu deficiencies. Given the importance of the research on novel therapies, finding a suitable substrate for extracting quality amounts of mineral is a priority. The physiological influence of enzymes dependent on minerals with regard to neuroinflammatory and neurobehavioral, metabolic, cardiovascular, osteodegenerative, anti-aging, pulmonary, and immunological defense disorders might dictate the importance of further research for designing supplementation based on the nutraceutical potential of OLE of these cultivars predominant in the northern region of Portugal.
Collapse
Affiliation(s)
- Natália M. de Oliveira
- ICBAS-UP Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Lara Lopes
- ICBAS-UP Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| | - Maria Helena Chéu
- RECI—Research Unit in Education and Community Intervention, Instituto Piaget—ISEIT/Viseu, 3515-776 Viseu, Portugal
| | - Eugénio Soares
- Laboratório Central de Análises, Universidade de Aveiro-UA, 3810-193 Aveiro, Portugal
| | - Diana Meireles
- ICBAS-UP Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Machado
- ICBAS-UP Laboratory of Applied Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- CBSin, Centre of Biosciences in Integrative Health, 4250-105 Porto, Portugal
| |
Collapse
|
7
|
Osteomalacia Is Not a Single Disease. Int J Mol Sci 2022; 23:ijms232314896. [PMID: 36499221 PMCID: PMC9740398 DOI: 10.3390/ijms232314896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Among bone-material qualities, mineralization is pivotal in conferring stiffness and toughness to the bone. Osteomalacia, a disease ensuing from inadequate mineralization of the skeleton, is caused by different processes leading to decreased available mineral (calcium and/or phosphate) or enzymatic alterations. Vitamin D deficiency, which remains the major cause of altered mineralization leading to inadequate intestinal calcium and phosphate absorption, may be also associated with other conditions primarily responsible for abnormal mineralization. Given the reality of widespread vitamin D inadequacy, a full biochemical assessment of mineral metabolism is always necessary to rule out or confirm other conditions. Both too-high or too-low serum alkaline phosphatase (ALP) levels are important for diagnosis. Osteomalacic syndrome is reversible, at least in part, by specific treatment. Osteomalacia and bone mineralization themselves constitute largely unexplored fields of research. The true prevalence of the different forms of osteomalacia and the recovery after proper therapy have yet to be determined in the real world. Although non-invasive techniques to assess bone mineralization are not available in clinical practice, the systematic assessment of bone quality could help in refining the diagnosis and guiding the treatment. This review summarizes what is known of osteomalacia recent therapeutic developments and highlights the future issues of research in this field.
Collapse
|
8
|
Treatment of X-Linked Hypophosphatemia in Children. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The conventional treatment for X-linked hypophosphatemia (XLH), consisting of phosphorus supplementation and a biologically active form of vitamin D (alfacalcidol or calcitriol), is used to treat rickets and leg deformities and promote growth. However, patients’ adult height often remains less than −2 SD. Moreover, adverse events, such as renal calcification and hyperparathyroidism, may occur. The main pathology in XLH is caused by excessive production of fibroblast growth factor 23 (FGF23). Several studies have demonstrated that treatment with burosumab, a blocking neutralizing antibody against FGF23, is better than conventional therapy for severe XLH and has no serious, short-term side effects. Thus, treatment with burosumab may be an option for severe XLH. The present article reviews the conventional and burosumab therapies. In addition to the fact that the long-term efficacy of antibody-based treatment has not been demonstrated, there are other, unresolved issues concerning the burosumab treatment of XLH.
Collapse
|