1
|
Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu YL, Murphy RW, Peng MS, Zhang YP. An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens. Mol Biol Evol 2018; 34:3081-3088. [PMID: 28961939 DOI: 10.1093/molbev/msx227] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The evolutionary history for dwarfism in chickens remains an enigma. Herein, we explore the evolution of the Serama, the smallest breed of chicken. Leveraging comparative population genomics, analyses identify several genes that are potentially associated with the growth and development of bones and muscles. These genes, and in particular both POU1F1 and IGF1, are under strong positive selection. Three allopatric dwarf bantams (Serama, Yuanbao, and Daweishan) with different breeding-histories, form distinct clusters and exhibit unique population structures. Parallel genetic mechanisms underlay their variation in body size. These findings provide insights into the multiple and complex pathways, depending on genomic variation, that chicken can take in response to aviculture selection for dwarfism.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Sheng Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi-Long Xu
- Xiaodu Veterinary Station in Tongnan District, Chongqing, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Belkadi A, Jacques C, Savagner F, Malthièry Y. Phylogenetic analysis of the human thyroglobulin regions. Thyroid Res 2012; 5:3. [PMID: 22549183 PMCID: PMC3464141 DOI: 10.1186/1756-6614-5-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/01/2012] [Indexed: 02/02/2023] Open
Abstract
Thyroglobulin is a large protein present in all vertebrates. It is synthesized in the thyrocytes and exported to lumen of the thyroid follicle, where its tyrosine residues are iodinated . The iodinated thyroglobulin is reintegrated into the cell and processed (cleaved to free its two extremities) for thyroid hormone synthesis. Thyroglobulin sequence analysis has identified four regions of the molecule: Tg1, Tg2, Tg3 and ChEL. Structural abnormalities and mutations result in different pathological consequences, depending on the thyroglobulin region affected. We carried out a bioinformatic analysis of thyroglobulin, determining the origin and the function of each region. Our results suggest that the Tg1 region acts as a binding protein on the apical membrane, the Tg2 region is involved in protein adhesion and the Tg3 region is involved in determining the three-dimensional structure of the protein. The ChEL domain is involved in thyroglobulin transport, dimerization and adhesion. The presence of repetitive domains in the Tg1, Tg2 and Tg3 regions suggests that these domains may have arisen through duplication.
Collapse
Affiliation(s)
- Abdelaziz Belkadi
- INSERM U694, Institut Biologie Santé (IBS), rue des Capucins, F-49100 Angers, France.
| | | | | | | |
Collapse
|